Meta-analysis of up to 622,409 individuals identifies 40 novel smoking behaviour associated genetic loci.
Journal
Molecular psychiatry
ISSN: 1476-5578
Titre abrégé: Mol Psychiatry
Pays: England
ID NLM: 9607835
Informations de publication
Date de publication:
10 2020
10 2020
Historique:
received:
02
05
2018
accepted:
14
11
2018
revised:
30
09
2018
pubmed:
9
1
2019
medline:
1
4
2021
entrez:
9
1
2019
Statut:
ppublish
Résumé
Smoking is a major heritable and modifiable risk factor for many diseases, including cancer, common respiratory disorders and cardiovascular diseases. Fourteen genetic loci have previously been associated with smoking behaviour-related traits. We tested up to 235,116 single nucleotide variants (SNVs) on the exome-array for association with smoking initiation, cigarettes per day, pack-years, and smoking cessation in a fixed effects meta-analysis of up to 61 studies (up to 346,813 participants). In a subset of 112,811 participants, a further one million SNVs were also genotyped and tested for association with the four smoking behaviour traits. SNV-trait associations with P < 5 × 10
Identifiants
pubmed: 30617275
doi: 10.1038/s41380-018-0313-0
pii: 10.1038/s41380-018-0313-0
pmc: PMC7515840
mid: EMS80518
doi:
Types de publication
Journal Article
Meta-Analysis
Research Support, N.I.H., Extramural
Research Support, N.I.H., Intramural
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, P.H.S.
Langues
eng
Sous-ensembles de citation
IM
Pagination
2392-2409Subventions
Organisme : NIGMS NIH HHS
ID : R01 GM126479
Pays : United States
Organisme : Cancer Research UK
ID : C490/A16561
Pays : United Kingdom
Organisme : Medical Research Council
ID : G1000861
Pays : United Kingdom
Organisme : Wellcome Trust
ID : 084723/Z/08/Z
Pays : United Kingdom
Organisme : Department of Health
ID : RP-PG-0407-10371
Pays : United Kingdom
Organisme : Wellcome Trust
ID : 083948
Pays : United Kingdom
Organisme : Medical Research Council
ID : G0601966
Pays : United Kingdom
Organisme : Wellcome Trust
ID : 098381
Pays : United Kingdom
Organisme : Medical Research Council
ID : MC_PC_17228
Pays : United Kingdom
Organisme : Cancer Research UK
ID : 10124
Pays : United Kingdom
Organisme : British Heart Foundation
ID : RE/13/5/30177
Pays : United Kingdom
Organisme : Department of Health
ID : 16/136/68
Pays : United Kingdom
Organisme : Medical Research Council
ID : MR/L003120/1
Pays : United Kingdom
Organisme : Medical Research Council
ID : MR/K023241/1
Pays : United Kingdom
Organisme : NIA NIH HHS
ID : RC4 AG039029
Pays : United States
Organisme : NIA NIH HHS
ID : U01 AG009740
Pays : United States
Organisme : Medical Research Council
ID : MC_U106179471
Pays : United Kingdom
Organisme : Wellcome Trust
ID : 104036/Z/14/Z
Pays : United Kingdom
Organisme : British Heart Foundation
ID : SP/04/002
Pays : United Kingdom
Organisme : British Heart Foundation
ID : RG/13/13/30194
Pays : United Kingdom
Organisme : British Heart Foundation
ID : SP/08/005/25115
Pays : United Kingdom
Organisme : Medical Research Council
ID : G0800270
Pays : United Kingdom
Organisme : Medical Research Council
ID : MC_UU_12015/1
Pays : United Kingdom
Organisme : NIDA NIH HHS
ID : R21 DA040177
Pays : United States
Organisme : Chief Scientist Office
ID : CZD/16/6
Pays : United Kingdom
Organisme : Department of Health
ID : BTRU-2014-10024
Pays : United Kingdom
Organisme : Medical Research Council
ID : MR/N01104X/2
Pays : United Kingdom
Organisme : Medical Research Council
ID : G1001799
Pays : United Kingdom
Organisme : British Heart Foundation
ID : PG/02/128
Pays : United Kingdom
Organisme : Chief Scientist Office
ID : ETM/55
Pays : United Kingdom
Organisme : British Heart Foundation
ID : SP/09/002
Pays : United Kingdom
Organisme : Medical Research Council
ID : MR/M013111/1
Pays : United Kingdom
Organisme : Medical Research Council
ID : MR/L01341X/1
Pays : United Kingdom
Organisme : NHLBI NIH HHS
ID : R01 HL119443
Pays : United States
Organisme : NIDDK NIH HHS
ID : R01 DK062370
Pays : United States
Organisme : Medical Research Council
ID : MC_PC_12010
Pays : United Kingdom
Organisme : Medical Research Council
ID : MR/R023484/1
Pays : United Kingdom
Organisme : NHGRI NIH HHS
ID : R01 HG008983
Pays : United States
Organisme : Medical Research Council
ID : MR/N01104X/1
Pays : United Kingdom
Organisme : European Research Council
ID : 268834
Pays : International
Organisme : Medical Research Council
ID : G9521010D
Pays : United Kingdom
Organisme : Medical Research Council
ID : MR/S003746/1
Pays : United Kingdom
Organisme : NIA NIH HHS
ID : RC2 AG036495
Pays : United States
Organisme : British Heart Foundation
ID : RG/08/014/24067
Pays : United Kingdom
Organisme : British Heart Foundation
ID : RG/14/5/30893
Pays : United Kingdom
Organisme : Medical Research Council
ID : MR/L01632X/1
Pays : United Kingdom
Organisme : British Heart Foundation
ID : RG/07/005/23633
Pays : United Kingdom
Organisme : Wellcome Trust
ID : 090532
Pays : United Kingdom
Organisme : Medical Research Council
ID : MC_UU_00007/10
Pays : United Kingdom
Organisme : NIDDK NIH HHS
ID : U01 DK062370
Pays : United States
Organisme : Medical Research Council
ID : MR/S003762/1
Pays : United Kingdom
Organisme : Medical Research Council
ID : MR/N011317/1
Pays : United Kingdom
Organisme : Wellcome Trust
ID : 085475
Pays : United Kingdom
Organisme : NICHD NIH HHS
ID : R01 HD057194
Pays : United States
Organisme : Department of Health
ID : HPRU-2012-10141
Pays : United Kingdom
Organisme : Biotechnology and Biological Sciences Research Council
ID : BB/F019394/1
Pays : United Kingdom
Organisme : Wellcome Trust
ID : WT098051
Pays : United Kingdom
Organisme : Cancer Research UK
ID : 10119
Pays : United Kingdom
Organisme : Medical Research Council
ID : MC_QA137853
Pays : United Kingdom
Organisme : Medical Research Council
ID : MR/K026992/1
Pays : United Kingdom
Organisme : Medical Research Council
ID : G0700931
Pays : United Kingdom
Références
Wain LV, Shrine N, Miller S, Jackson VE, Ntalla I, Soler Artigas M, et al. Novel insights into the genetics of smoking behaviour, lung function, and chronic obstructive pulmonary disease (UK BiLEVE): a genetic association study in UK Biobank. Lancet Respir Med. 2015;3:769–81.
pubmed: 26423011
pmcid: 4593935
Wain LV, Shrine N, Artigas MS, Erzurumluoglu AM, Noyvert B, Bossini-Castillo L, et al. Genome-wide association analyses for lung function and chronic obstructive pulmonary disease identify new loci and potential druggable targets. Nat Genet. 2017;49:416–25.
pubmed: 28166213
pmcid: 5326681
McKay JD, Hung RJ, Han Y, Zong X, Carreras-Torres R, Christiani DC, et al. Large-scale association analysis identifies new lung cancer susceptibility loci and heterogeneity in genetic susceptibility across histological subtypes. Nat Genet. 2017;49:1126–32.
pubmed: 28604730
pmcid: 5510465
O'Donnell CJ, Nabel EG. Genomics of Cardiovascular Disease. New Engl J Med. 2011;365:2098–109.
pubmed: 22129254
Reitsma MB, Fullman N, Ng M, Salama JS, Abajobir A, Abate KH, et al. Smoking prevalence and attributable disease burden in 195 countries and territories, 1990-2015: a systematic analysis from the Global Burden of Disease Study 2015. The Lancet 2017;389:1885–906.
Tobacco and Genetics Consortium. Genome-wide meta-analyses identify multiple loci associated with smoking behavior. Nat Genet. 2010;42:441–7.
Hancock DB, Reginsson GW, Gaddis NC, Chen X, Saccone NL, Lutz SM, et al. Genome-wide meta-analysis reveals common splice site acceptor variant in CHRNA4 associated with nicotine dependence. Transl Psychiatry. 2015;5:e651.
pubmed: 26440539
pmcid: 4930126
Siedlinski M, Cho MH, Bakke P, Gulsvik A, Lomas DA, Anderson W, et al. Genome-wide association study of smoking behaviours in patients with COPD. Thorax. 2011;66:894–902.
pubmed: 21685187
Thorgeirsson TE, Gudbjartsson DF, Surakka I, Vink JM, Amin N, Geller F, et al. Sequence variants at CHRNB3-CHRNA6 and CYP2A6 affect smoking behavior. Nat Genet. 2010;42:448–53.
pubmed: 20418888
pmcid: 3080600
Timofeeva MN, McKay JD, Smith GD, Johansson M, Byrnes GB, Chabrier A, et al. Genetic polymorphisms in 15q25 and 19q13 loci, cotinine levels, and risk of lung cancer in EPIC. Cancer Epidemiol Biomark Prev. 2011;20:2250–61.
Bloom AJ, Baker TB, Chen L-S, Breslau N, Hatsukami D, Bierut LJ, et al. Variants in two adjacent genes, EGLN2 and CYP2A6, influence smoking behavior related to disease risk via different mechanisms. Hum Mol Genet. 2014;23:555–61.
pubmed: 24045616
Thakur GA, Sengupta SM, Grizenko N, Choudhry Z, Joober R. Family-based association study of ADHD and genes increasing the risk for smoking behaviours. Arch Dis Child. 2012;97:1027.
pubmed: 23109089
Munafò MR, Flint J. The genetic architecture of psychophysiological phenotypes. Psychophysiology. 2014;51:1331–2.
pubmed: 25387716
pmcid: 4278452
Keskitalo K, Broms U, Heliovaara M, Ripatti S, Surakka I, Perola M, et al. Association of serum cotinine level with a cluster of three nicotinic acetylcholine receptor genes (CHRNA3/CHRNA5/CHRNB4) on chromosome 15. Hum Mol Genet. 2009;18:4007–12.
pubmed: 19628476
pmcid: 2748889
Vink JM, Willemsen G, Boomsma DI. Heritability of smoking initiation and nicotine dependence. Behav Genet. 2005;35:397–406.
pubmed: 15971021
Carmelli D, Swan GE, Robinette D, Fabsitz R. Genetic Influence on Smoking — A Study of Male Twins. New Engl J Med. 1992;327:829–33.
pubmed: 1508241
Kaprio J, Koskenvuo M, Sarna S. Cigarette smoking, use of alcohol, and leisure-time physical activity among same-sexed adult male twins. Prog Clin Biol Res. 1981;69(Pt C):37–46.
pubmed: 7198250
Liu DJ, Brazel DM, Turcot V, Zhan X, Gong J, Barnes DR, et al. Exome chip meta-analysis elucidates the genetic architecture of rare coding variants in smoking and drinking behavior. bioRxiv 2017.
Centers for Disease Control and Prevention (CDC). Cigarette smoking among adults--United States, 2007. MMWR Morb Mortal Wkly Rep. 2008;57:1221–6.
Staley JR, Jones E, Kaptoge S, Butterworth AS, Sweeting MJ, Wood AM, et al. A comparison of Cox and logistic regression for use in genome-wide association studies of cohort and case-cohort design. Eur J Human Genet : EJHG. 2017;25:854–62.
Feng S, Liu D, Zhan X, Wing MK, Abecasis GR. RAREMETAL: fast and powerful meta-analysis for rare variants. Bioinformatics. 2014;30:2828–9.
pubmed: 24894501
pmcid: 4173011
Zhan X, Hu Y, Li B, Abecasis GR, Liu DJ. RVTESTS: an efficient and comprehensive tool for rare variant association analysis using sequence data. Bioinformatics. 2016;32:1423–6.
pubmed: 27153000
pmcid: 4848408
Willer CJ, Li Y, Abecasis GR. METAL: fast and efficient meta-analysis of genomewide association scans. Bioinformatics. 2010;26:2190–1.
pubmed: 20616382
pmcid: 2922887
Bycroft C, Freeman C, Petkova D, Band G, Elliott LT, Sharp K, et al. The UK Biobank resource with deep phenotyping and genomic data. Nature. 2018;562:203–9
Jiang B, Chen S, Jiang Y, Liu M, Iacono WG, Hewitt JK, et al. Proper Conditional Analysis in the Presence of Missing Data Identified Novel Independently Associated Low Frequency Variants in Nicotine Dependence Genes. bioRxiv 2017.
Madsen BE, Browning SR. A groupwise association test for rare mutations using a weighted sum statistic. PLoS Genet. 2009;5:e1000384.
pubmed: 19214210
pmcid: 2633048
Morris AP, Zeggini E. An evaluation of statistical approaches to rare variant analysis in genetic association studies. Genet Epidemiol. 2010;34:188–93.
pubmed: 19810025
Wu MC. Rare variant association testing for sequencing data using the sequence kernel association test (SKAT). Am J Hum Genet. 2011;89:82–93.
pubmed: 21737059
pmcid: 3135811
Zhan X, Liu DJ. SEQMINER: An R-Package to Facilitate the Functional Interpretation of Sequence-Based Associations. Genet Epidemiol. 2015;39:619–23.
pubmed: 26394715
pmcid: 4794281
Hemani G, Zheng J, Elsworth B, Wade KH, Haberland V, Baird D, et al. The MR-Base platform supports systematic causal inference across the human phenome. eLife. 2018;7:e34408.
pubmed: 29846171
pmcid: 5976434
Pierce BL, Burgess S. Efficient design for Mendelian randomization studies: subsample and 2-sample instrumental variable estimators. Am J Epidemiol. 2013;178:1177–84.
pubmed: 23863760
pmcid: 3783091
Bowden J, Davey Smith G, Burgess S. Mendelian randomization with invalid instruments: effect estimation and bias detection through Egger regression. Int J Epidemiol. 2015;44:512–25.
pubmed: 26050253
pmcid: 4469799
Rees JMB, Wood AM, Burgess S. Extending the MR-Egger method for multivariable Mendelian randomization to correct for both measured and unmeasured pleiotropy. Stat Med. 2017;36:4705–18.
pubmed: 28960498
pmcid: 5725762
Bowden J, Davey Smith G, Haycock PC, Burgess S. Consistent estimation in Mendelian randomization with some invalid instruments using a weighted median estimator. Genet Epidemiol. 2016;40:304–14.
pubmed: 27061298
pmcid: 4849733
Locke AE, Kahali B, Berndt SI, Justice AE, Pers TH, Day FR, et al. Genetic studies of body mass index yield new insights for obesity biology. Nature. 2015;518:197–206.
pubmed: 25673413
pmcid: 4382211
Schizophrenia Working Group of the Psychiatric Genomics Consortium, Ripke S, Neale BM, Corvin A, Walters JTR, Farh K-H, et al. Biological insights from 108 schizophrenia-associated genetic loci. Nature. 2014;511:421.
pmcid: 4112379
Okbay A, Beauchamp JP, Fontana MA, Lee JJ, Pers TH, Rietveld CA, et al. Genome-wide association study identifies 74 loci associated with educational attainment. Nature. 2016;533:539–42.
pubmed: 27225129
pmcid: 4883595
MacArthur J, Bowler E, Cerezo M, Gil L, Hall P, Hastings E, et al. The new NHGRI-EBI Catalog of published genome-wide association studies (GWAS Catalog). Nucleic Acids Res. 2017;45(D1):D896–901.
pubmed: 27899670
Battle A, Brown CD, Engelhardt BE, Montgomery SB. Genetic effects on gene expression across human tissues. Nature. 2017;550:204–13.
pubmed: 29022597
Ng B, White CC, Klein H-U, Sieberts SK, McCabe C, Patrick E, et al. An xQTL map integrates the genetic architecture of the human brain's transcriptome and epigenome. Nat Neurosci 2017; 20:1418-26; advance online publication.
Trabzuni D, Ryten M, Walker R, Smith C, Imran S, Ramasamy A, et al. Quality control parameters on a large dataset of regionally dissected human control brains for whole genome expression studies. J Neurochem. 2011;119:275–82.
pubmed: 21848658
pmcid: 3664422
Ongen H, Buil A, Brown AA, Dermitzakis ET, Delaneau O. Fast and efficient QTL mapper for thousands of molecular phenotypes. Bioinformatics. 2016;32:1479–85.
pubmed: 26708335
Storey JD, Tibshirani R. Statistical significance for genomewide studies. Proc Natl Acad Sci USA. 2003;100:9440–5.
pubmed: 12883005
pmcid: 170937
Kamburov A, Wierling C, Lehrach H, Herwig R. ConsensusPathDB—a database for integrating human functional interaction networks. Nucleic Acids Res. 2009;37(suppl_1):D623–8.
pubmed: 18940869
Adzhubei IA, Schmidt S, Peshkin L, Ramensky VE, Gerasimova A, Bork P, et al. A method and server for predicting damaging missense mutations. Nat Meth. 2010;7:248–9.
Shihab HA, Gough J, Cooper DN, Stenson PD, Barker GL, Edwards KJ, et al. Predicting the functional, molecular, and phenotypic consequences of amino acid substitutions using hidden Markov models. Hum Mutat. 2013;34:57–65.
pubmed: 23033316
Bulik-Sullivan BK, Loh PR, Finucane HK, Ripke S, Yang J, Patterson N, et al. LD Score regression distinguishes confounding from polygenicity in genome-wide association studies. Nat Genet. 2015;47:291–5.
pubmed: 25642630
pmcid: 4495769
Zheng J, Erzurumluoglu AM, Elsworth BL, Kemp JP, Howe L, Haycock PC, et al. LD Hub: a centralized database and web interface to perform LD score regression that maximizes the potential of summary level GWAS data for SNP heritability and genetic correlation analysis. Bioinformatics. 2017;33:272–9.
pubmed: 27663502
Wang JC, Cruchaga C, Saccone NL, Bertelsen S, Liu P, Budde JP, et al. Risk for nicotine dependence and lung cancer is conferred by mRNA expression levels and amino acid change in CHRNA5. Hum Mol Genet. 2009;18:3125–35.
pubmed: 19443489
pmcid: 2714722
Gage SH, Jones HJ, Taylor AE, Burgess S, Zammit S, Munafo MR. Investigating causality in associations between smoking initiation and schizophrenia using Mendelian randomization. Sci Rep. 2017;7:40653.
pubmed: 28102331
pmcid: 5244403
Kelly C, McCreadie R. Cigarette smoking and schizophrenia. Adv Psychiatr Treat. 2000;6:327–31.
Speliotes EK, Willer CJ, Berndt SI, Monda KL, Thorleifsson G, Jackson AU, et al. Association analyses of 249,796 individuals reveal 18 new loci associated with body mass index. Nat Genet. 2010;42:937–48.
pubmed: 20935630
pmcid: 3014648
Wheeler E, Huang N, Bochukova EG, Keogh JM, Lindsay S, Garg S, et al. Genome-wide SNP and CNV analysis identifies common and low-frequency variants associated with severe early-onset obesity. Nat Genet. 2013;45:513–7.
pubmed: 23563609
pmcid: 4106235
Hecht SS. Tobacco Smoke Carcinogens and Lung Cancer. JNCI: J Natl Cancer Inst. 1999;91:1194–210.
pubmed: 10413421
Ockene IS, Miller NH. Cigarette Smoking, Cardiovascular Disease, and Stroke. A Statement Healthc Prof Am Heart Assoc. 1997;96:3243–7.
Uhlen M, Fagerberg L, Hallstrom BM, Lindskog C, Oksvold P, Mardinoglu A, et al. Proteomics. Tissue-based map of the human proteome. Science. 2015;347:1260419.
pubmed: 25613900
O'Leary NA, Wright MW, Brister JR, Ciufo S, Haddad D, McVeigh R, et al. Reference sequence (RefSeq) database at NCBI: current status, taxonomic expansion, and functional annotation. Nucleic Acids Res. 2016;44(D1):D733–45.
pubmed: 26553804
Ware JJ, Chen X, Vink J, Loukola A, Minica C, Pool R, et al. Genome-Wide Meta-Analysis of Cotinine Levels in Cigarette Smokers Identifies Locus at 4q13.2. Sci Rep. 2016;6:20092.
pubmed: 26833182
pmcid: 4735517
Loukola A, Buchwald J, Gupta R, Palviainen T, Hallfors J, Tikkanen E, et al. A Genome-Wide Association Study of a Biomarker of Nicotine Metabolism. PLoS Genet. 2015;11:e1005498.
pubmed: 26407342
pmcid: 4583245
Turley P, Walters RK, Maghzian O, Okbay A, Lee JJ, Fontana MA, et al. Multi-trait analysis of genome-wide association summary statistics using MTAG. Nat Genet. 2018;50:229–37.
pubmed: 29292387
pmcid: 5805593
Munafo MR, Tilling K, Taylor AE, Evans DM, Davey Smith G. Collider scope: when selection bias can substantially influence observed associations. Int J Epidemiol. 2018;47:226–35.
pubmed: 29040562
Aberg KA, Liu Y, Bukszár J, et al. A comprehensive family-based replication study of schizophrenia genes. JAMA Psychiatry. 2013;70:573–81.
pubmed: 23894747
pmcid: 5297889
Zhang S, Chen H, Zhao X, Cao J, Tong J, Lu J, et al. REV3L 3'UTR 460 T>C polymorphism in microRNA target sites contributes to lung cancer susceptibility. Oncogene. 2013;32:242–50.
pubmed: 22349819
Demontis D, Rajagopal VM, Als TD, Grove J, Pallesen J, Hjorthoj C, et al. Genome-wide association study implicates CHRNA2 in cannabis use disorder. bioRxiv 2018.
Steenaard RV, Ligthart S, Stolk L, Peters MJ, van Meurs JB, Uitterlinden AG, et al. Tobacco smoking is associated with methylation of genes related to coronary artery disease. Clin Epigenetics. 2015;7:54.
pubmed: 26015811
pmcid: 4443552
van den Berg ME, Warren HR, Cabrera CP, Verweij N, Mifsud B, Haessler J, et al. Discovery of novel heart rate-associated loci using the Exome Chip. Hum Mol Genet. 2017;26:2346–63.
pubmed: 28379579
pmcid: 5458336
Warren HR, Evangelou E, Cabrera CP, Gao H, Ren M, Mifsud B, et al. Genome-wide association analysis identifies novel blood pressure loci and offers biological insights into cardiovascular risk. Nat Genet. 2017;49:403–15.
pubmed: 28135244
pmcid: 5972004
Hoffmann TJ, Ehret GB, Nandakumar P, Ranatunga D, Schaefer C, Kwok PY, et al. Genome-wide association analyses using electronic health records identify new loci influencing blood pressure variation. Nat Genet. 2017;49:54–64.
pubmed: 27841878
Kong A, Thorleifsson G, Frigge ML, Vilhjalmsson BJ, Young AI, Thorgeirsson TE, et al. The nature of nurture: effects of parental genotypes. Science. 2018;359:424–8.
pubmed: 29371463
Kumasaka N, Aoki M, Okada Y, Takahashi A, Ozaki K, Mushiroda T, et al. Haplotypes with copy number and single nucleotide polymorphisms in CYP2A6 locus are associated with smoking quantity in a Japanese population. PLoS ONE 2012;7:e44507.
pubmed: 23049750
pmcid: 3458030