High-Throughput Omics and Statistical Learning Integration for the Discovery and Validation of Novel Diagnostic Signatures in Colorectal Cancer.
Algorithms
Area Under Curve
Bayes Theorem
Biomarkers, Tumor
/ genetics
Chemotactic Factors
/ genetics
Colorectal Neoplasms
/ diagnosis
Computational Biology
/ methods
Female
GPI-Linked Proteins
/ genetics
Gene Expression Profiling
/ methods
Gene Expression Regulation, Neoplastic
Humans
Isoantigens
/ genetics
Logistic Models
Machine Learning
Oligonucleotide Array Sequence Analysis
/ methods
Prognosis
Receptors, Cell Surface
/ genetics
Receptors, Cytoplasmic and Nuclear
/ genetics
S100 Proteins
/ genetics
Sensitivity and Specificity
Sodium-Bicarbonate Symporters
/ genetics
Survival Analysis
Transforming Growth Factor beta1
/ genetics
biomarker
colorectal cancer
diagnosis
machine learning
transcriptomics
variable selection
Journal
International journal of molecular sciences
ISSN: 1422-0067
Titre abrégé: Int J Mol Sci
Pays: Switzerland
ID NLM: 101092791
Informations de publication
Date de publication:
12 Jan 2019
12 Jan 2019
Historique:
received:
30
11
2018
revised:
31
12
2018
accepted:
04
01
2019
entrez:
16
1
2019
pubmed:
16
1
2019
medline:
27
4
2019
Statut:
epublish
Résumé
The advancement of bioinformatics and machine learning has facilitated the discovery and validation of omics-based biomarkers. This study employed a novel approach combining multi-platform transcriptomics and cutting-edge algorithms to introduce novel signatures for accurate diagnosis of colorectal cancer (CRC). Different random forests (RF)-based feature selection methods including the area under the curve (AUC)-RF, Boruta, and Vita were used and the diagnostic performance of the proposed biosignatures was benchmarked using RF, logistic regression, naïve Bayes, and k-nearest neighbors models. All models showed satisfactory performance in which RF appeared to be the best. For instance, regarding the RF model, the following were observed: mean accuracy 0.998 (standard deviation (SD) < 0.003), mean specificity 0.999 (SD < 0.003), and mean sensitivity 0.998 (SD < 0.004). Moreover, proposed biomarker signatures were highly associated with multifaceted hallmarks in cancer. Some biomarkers were found to be enriched in epithelial cell signaling in
Identifiants
pubmed: 30642095
pii: ijms20020296
doi: 10.3390/ijms20020296
pmc: PMC6358915
pii:
doi:
Substances chimiques
Biomarkers, Tumor
0
CD177 protein, human
0
Chemotactic Factors
0
GPI-Linked Proteins
0
Isoantigens
0
NR5A2 protein, human
0
Receptors, Cell Surface
0
Receptors, Cytoplasmic and Nuclear
0
S100 Proteins
0
S100A2 protein, human
0
SLC4A4 protein, human
0
Sodium-Bicarbonate Symporters
0
TGFB1 protein, human
0
Transforming Growth Factor beta1
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Subventions
Organisme : National Research Foundation of Korea
ID : NRF-2012M3A9C4048796/2018R1A5A2024425
Références
CA Cancer J Clin. 2016 Jul;66(4):271-89
pubmed: 27253694
Nucleic Acids Res. 2017 Jul 3;45(W1):W98-W102
pubmed: 28407145
Biochem Biophys Res Commun. 2019 Jan 8;508(2):563-569
pubmed: 30509496
BMC Bioinformatics. 2015 May 22;16:169
pubmed: 25994840
Sci Rep. 2018 Feb 28;8(1):3790
pubmed: 29491380
Microarrays (Basel). 2015 Aug 21;4(3):389-406
pubmed: 27600230
Int J Cancer. 2013 Feb 15;132(4):905-15
pubmed: 22674296
Bioinformatics. 2016 Jul 1;32(13):1966-73
pubmed: 27153719
J Gastrointest Oncol. 2012 Dec;3(4):377-9
pubmed: 23205317
Bioinformatics. 2008 May 1;24(9):1154-60
pubmed: 18325927
Br J Cancer. 2018 Jun;118(12):1609-1616
pubmed: 29872151
Nat Rev Genet. 2013 Feb;14(2):89-99
pubmed: 23269463
Sci Rep. 2018 Feb 9;8(1):2732
pubmed: 29426902
Am J Gastroenterol. 2017 Jan;112(1):163-171
pubmed: 27779195
Nat Rev Gastroenterol Hepatol. 2018 Mar;15(3):181-188
pubmed: 29410534
World J Gastroenterol. 2014 Dec 14;20(46):17476-82
pubmed: 25516661
Oncotarget. 2017 Jun 13;8(24):39367-39381
pubmed: 28455965
Cancer Med. 2013 Apr;2(2):253-65
pubmed: 23634293
BMC Cancer. 2012 Jan 26;12:43
pubmed: 22280244
Mol Cancer Res. 2007 Dec;5(12):1263-75
pubmed: 18171984
Bioinformatics. 2017 Dec 15;33(24):3973-3981
pubmed: 29036271
Brief Bioinform. 2019 Mar 22;20(2):492-503
pubmed: 29045534
Nucleic Acids Res. 2018 Jul 2;46(W1):W514-W522
pubmed: 29878180
Nat Protoc. 2015 Jun;10(6):823-44
pubmed: 25950236
BMC Bioinformatics. 2013 Apr 05;14:119
pubmed: 23560875
Clin Transl Gastroenterol. 2017 Nov 30;8(11):e128
pubmed: 29189767
Ann Intern Med. 2015 Jan 6;162(1):55-63
pubmed: 25560714
Metabolism. 2018 Oct;87:18-24
pubmed: 29936174
BMC Bioinformatics. 2017 Apr 11;18(1):210
pubmed: 28399794
Nat Commun. 2017 Oct 20;8(1):1077
pubmed: 29057876
Int J Cancer. 2014 Mar 15;134(6):1399-407
pubmed: 23982929
Oncotarget. 2017 Nov 25;8(65):109436-109456
pubmed: 29312619
Biometrics. 2014 Dec;70(4):872-80
pubmed: 25196635
Sci Data. 2018 Apr 17;5:180061
pubmed: 29664468
Metabolomics. 2018 Aug 10;14(8):109
pubmed: 30830397
Proc Natl Acad Sci U S A. 2009 Apr 28;106(17):7131-6
pubmed: 19359472
CA Cancer J Clin. 2018 Nov;68(6):394-424
pubmed: 30207593
Int J Mol Sci. 2018 Sep 27;19(10):
pubmed: 30262723