MR extracellular volume mapping and non-contrast T1ρ mapping allow early detection of myocardial fibrosis in diabetic monkeys.
Animals
Cardiomyopathies
/ complications
Diabetes Mellitus, Experimental
Diabetes Mellitus, Type 2
/ complications
Early Diagnosis
Extracellular Space
/ diagnostic imaging
Female
Fibrosis
/ complications
Macaca mulatta
Magnetic Resonance Imaging, Cine
/ methods
Male
Myocardium
/ pathology
Ventricular Dysfunction, Left
/ diagnosis
Diastole
Extracellular matrix
Fibrosis
Rhesus monkey
Type 2 diabetes mellitus
Journal
European radiology
ISSN: 1432-1084
Titre abrégé: Eur Radiol
Pays: Germany
ID NLM: 9114774
Informations de publication
Date de publication:
Jun 2019
Jun 2019
Historique:
received:
10
05
2018
accepted:
04
12
2018
revised:
04
11
2018
pubmed:
16
1
2019
medline:
6
8
2019
entrez:
16
1
2019
Statut:
ppublish
Résumé
To detect diffuse myocardial fibrosis in different severity levels of left ventricular diastolic dysfunction (DD) in spontaneous type 2 diabetes mellitus (T2DM) rhesus monkeys. Eighteen spontaneous T2DM and nine healthy monkeys were studied. Echocardiography was performed for diastolic function classification. Cardiac magnetic resonance (CMR) imaging was performed to obtain extracellular volume fraction (ECV) maps and T1ρ maps at two different spin-locking frequencies. ECV values, T1ρ values, and myocardial fibrosis index (mFI) values which are based on the dispersion of T1ρ, were calculated. Global peak diastolic longitudinal strain rates (GSrL) were also obtained. Echocardiography results showed mild DD in nine T2DM monkeys and moderate DD in the other nine. The global ECV values were significantly different among healthy animals as compared with animals with mild DD or moderate DD, and the ECV values of animals with moderate DD were significantly higher as compared with those of mild DD. The mFI values increased progressively from healthy animals to those with mild DD and then to those with moderate DD. Diastolic function indicators (e.g., early diastolic mitral annulus velocity, GSrL) correlated well with ECV and mFI. Monkeys with T2DM exhibit increased ECV, T1ρ, and mFI values, which may be indicative of the expansion of extracellular volume and the deposition of excessive collagen. T1ρ mapping may have the potential to be used for diffuse myocardial fibrosis assessment. • Monkeys with T2DM exhibit increased ECV, T1ρ, and mFI values, which may be indicative of the expansion of extracellular volume and the deposition of excessive collagen. • The relationship between diastolic dysfunction and diffuse myocardial fibrosis may be demonstrated by imaging markers. • Non-contrast T1ρ mapping may have the potential to be used for diffuse myocardial assessment.
Identifiants
pubmed: 30643944
doi: 10.1007/s00330-018-5950-9
pii: 10.1007/s00330-018-5950-9
pmc: PMC6510861
doi:
Types de publication
Journal Article
Langues
eng
Pagination
3006-3016Subventions
Organisme : National Natural Science Foundation of China
ID : 81520108014
Organisme : National Natural Science Foundation of China
ID : 81771800
Organisme : National Natural Science Foundation of China
ID : 81829003
Organisme : State's Key Project of Research and Development Plan of China
ID : 2016YFA0201402
Organisme : International Cooperation Project of Science and Technology Plan of Sichuan
ID : 2017HH0045
Références
Circulation. 2002 Jan 29;105(4):539-42
pubmed: 11815441
Circ Res. 2004 Jun 25;94(12):1533-42
pubmed: 15217918
J Am Soc Echocardiogr. 2005 Dec;18(12):1440-63
pubmed: 16376782
Circulation. 2007 Aug 7;116(6):637-47
pubmed: 17646587
J Magn Reson Imaging. 2007 Oct;26(4):1081-6
pubmed: 17896383
Eur Heart J. 2008 Jun;29(11):1377-85
pubmed: 18413309
Magn Reson Med. 2010 Nov;64(5):1453-60
pubmed: 20677236
Arch Dermatol. 2012 Feb;148(2):255-7
pubmed: 22351833
J Am Coll Cardiol. 2012 Mar 13;59(11):998-1005
pubmed: 22402071
J Cardiovasc Magn Reson. 2012 Jun 15;14:37
pubmed: 22704222
Magn Reson Med. 2013 May;69(5):1389-95
pubmed: 22736543
Magn Reson Med. 2013 May;69(5):1357-66
pubmed: 22791589
Magn Reson Med. 2012 Oct;68(4):1056-64
pubmed: 22887701
Methods Mol Biol. 2012;933:177-85
pubmed: 22893407
Radiology. 2012 Nov;265(2):402-9
pubmed: 22929334
J Cardiovasc Magn Reson. 2012 Sep 10;14:63
pubmed: 22963517
Pancreas. 2013 Apr;42(3):537-42
pubmed: 23303204
Heart. 2013 Jul;99(13):932-7
pubmed: 23349348
JACC Cardiovasc Imaging. 2013 Apr;6(4):475-84
pubmed: 23498674
JACC Cardiovasc Imaging. 2013 Jun;6(6):672-83
pubmed: 23643283
Obesity (Silver Spring). 2013 Aug;21(8):1643-9
pubmed: 23713008
Eur Heart J. 2014 Mar;35(10):657-64
pubmed: 23756336
J Cardiovasc Magn Reson. 2014 Jan 04;16:2
pubmed: 24387626
Diabet Med. 2014 Jul;31(7):794-8
pubmed: 24606573
Eur Heart J Cardiovasc Imaging. 2014 Nov;15(11):1263-9
pubmed: 24970723
JACC Cardiovasc Imaging. 2014 Oct;7(10):991-7
pubmed: 25240451
J Am Coll Cardiol. 2014 Dec 2;64(21):2281-93
pubmed: 25456761
J Cardiol. 2015 Dec;66(6):520-6
pubmed: 25981868
BMC Cardiovasc Disord. 2015 Jun 26;15:59
pubmed: 26113016
BMC Cardiovasc Disord. 2015 Oct 30;15:141
pubmed: 26518730
Nat Rev Endocrinol. 2016 Mar;12(3):144-53
pubmed: 26678809
PLoS One. 2016 Feb 22;11(2):e0149808
pubmed: 26901278
J Magn Reson Imaging. 2016 Nov;44(5):1179-1185
pubmed: 27061226
J Magn Reson Imaging. 2017 Jan;45(1):132-138
pubmed: 27309545
Neuroimage. 2017 Sep;158:480-487
pubmed: 27402601
Magn Reson Imaging. 2017 Oct;42:69-73
pubmed: 28461132
JACC Cardiovasc Imaging. 2018 Jan;11(1):48-59
pubmed: 28624408
Adv Exp Med Biol. 2018;1067:197-217
pubmed: 28980272
Cardiovasc Diabetol. 2018 Jan 04;17(1):7
pubmed: 29301529
Cardiovasc Res. 2018 Jun 1;114(7):954-964
pubmed: 29432575
Can J Cardiol. 2018 May;34(5):632-643
pubmed: 29731023