Protective Role of SOCS3 Modified Bone Marrow Mesenchymal Stem Cells in Hypoxia-Induced Injury of PC12 Cells.
Animals
Apoptosis
Cell Hypoxia
Cells, Cultured
Infarction, Middle Cerebral Artery
/ metabolism
Janus Kinases
/ metabolism
Male
Mesenchymal Stem Cell Transplantation
Mesenchymal Stem Cells
/ metabolism
PC12 Cells
Rats
Rats, Sprague-Dawley
STAT3 Transcription Factor
/ metabolism
Superoxide Dismutase
/ metabolism
Suppressor of Cytokine Signaling 3 Protein
/ genetics
BMSCs
Hypoxia
JAK/STAT3
PC12 cells
SOCS3
Journal
Journal of molecular neuroscience : MN
ISSN: 1559-1166
Titre abrégé: J Mol Neurosci
Pays: United States
ID NLM: 9002991
Informations de publication
Date de publication:
Mar 2019
Mar 2019
Historique:
received:
10
09
2018
accepted:
11
12
2018
pubmed:
17
1
2019
medline:
16
4
2019
entrez:
17
1
2019
Statut:
ppublish
Résumé
We attempted to explore the possible effects of SOCS3 (suppressor of cytokine signaling 3)-modified bone marrow mesenchymal stem cells (BMSCs) on the hypoxic injury of rat adrenal gland pheochromocytoma (PC-12) cells. PC12 cells were cultured with EGFP (enhanced green fluorescent protein)-BMSCs and SOCS3-BMSCs respectively under hypoxia in vitro and classified into control, hypoxia, EGFP-BMSCs, and SOCS3-BMSC groups. CCK-8, Hoechst 33258 staining, and Annexin V-FITC/PI staining were assessed to measure the viability and apoptosis of hypoxia-induced PC12 cells. The JAK/STAT3 pathway- and apoptosis-related proteins were identified by Western blot. Finally, rat models of permanent middle cerebral artery occlusion (pMCAO) were established to verify the potential influences of SOCS3-BMSCs in vivo. SOCS3-modified BMSCs can stably express SOCS3 protein. EGFP-BMSCs, especially SOCS3-BMSCs, can improve cell viability and SOD content, and reduce cell apoptosis, LDH viability, and MDA content in hypoxia-induced PC12 cells (all P < 0.05). Besides, EGFP-BMSCs and SOCS3-BMSCs decreased cleaved caspase-3 level and increased Bcl-2/Bax of hypoxia-induced PC12 cells, while SOCS3-BMSCs could also elevate SOCS3 protein and reduce p-STAT3 protein level in hypoxia-induced PC12 cells (all P < 0.05). In vivo experiments confirmed that EGFP-BMSCs, particularly SOCS3-BMSCs, could ameliorate infarct size and inhibit neuronal apoptosis of different degrees in pMACO rats (all P < 0.05). SOCS3-modified BMSCs can alleviate oxidative stress, improve cell viability, and reduce neuronal apoptosis by downregulation of JAK/STAT3 pathway, thereby exerting the neuroprotective role in ischemic brain injury.
Identifiants
pubmed: 30648230
doi: 10.1007/s12031-018-1243-7
pii: 10.1007/s12031-018-1243-7
doi:
Substances chimiques
STAT3 Transcription Factor
0
Socs3 protein, rat
0
Suppressor of Cytokine Signaling 3 Protein
0
Superoxide Dismutase
EC 1.15.1.1
Janus Kinases
EC 2.7.10.2
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
400-410Références
Brain Res Mol Brain Res. 2001 Sep 10;93(1):70-80
pubmed: 11532340
Fed Regist. 1985 May 9;50(90):19584-5
pubmed: 11655780
Neurology. 2002 Aug 27;59(4):514-23
pubmed: 12196642
J Biol Chem. 2003 Jan 3;278(1):661-71
pubmed: 12403768
J Neurochem. 2002 Dec;83(5):1072-86
pubmed: 12437578
J Neurosci Res. 2003 Sep 15;73(6):778-86
pubmed: 12949903
Blood. 2004 Aug 1;104(3):667-74
pubmed: 15069015
Differentiation. 2004 Sep;72(7):319-26
pubmed: 15554943
Curr Neurovasc Res. 2005 Jul;2(3):213-23
pubmed: 16181115
Brain Res Bull. 2005 Dec 15;68(1-2):95-102
pubmed: 16325009
Exp Neurol. 2006 Mar;198(1):54-64
pubmed: 16336965
Neurol Res. 2006 Jan;28(1):104-12
pubmed: 16464372
Mol Cell Biochem. 2006 Aug;288(1-2):179-89
pubmed: 16718380
Zhongguo Dang Dai Er Ke Za Zhi. 2006 Aug;8(4):266-71
pubmed: 16923353
J Neurosci Res. 2006 Nov 15;84(7):1495-504
pubmed: 16998918
J Neurosci Res. 2008 Apr;86(5):1024-35
pubmed: 18030676
Brain Res. 2008 Feb 21;1195:104-12
pubmed: 18206136
Neurosci Lett. 2008 Aug 29;441(3):323-7
pubmed: 18586073
Cell Signal. 2009 Mar;21(3):394-404
pubmed: 19056487
Neurol Res. 2010 Mar;32(2):148-56
pubmed: 19473555
Trends Immunol. 2009 Aug;30(8):392-400
pubmed: 19643666
J Neurosci. 2010 Apr 21;30(16):5754-66
pubmed: 20410127
Eur J Pharmacol. 2010 Sep 25;643(2-3):211-7
pubmed: 20599918
Brain Res. 2011 May 4;1388:134-40
pubmed: 21300037
Biochimie. 2011 May;93(5):909-20
pubmed: 21354254
PLoS One. 2013 Jul 22;8(7):e69090
pubmed: 23894411
J Cell Biochem. 2014 Jul;115(7):1262-8
pubmed: 24464633
Biochem Pharmacol. 2014 Apr 1;88(3):334-50
pubmed: 24522112
BMC Complement Altern Med. 2014 Aug 30;14:321
pubmed: 25174844
PLoS One. 2015 Jul 31;10(7):e0133980
pubmed: 26230326
Neural Regen Res. 2015 Sep;10(9):1356-8
pubmed: 26604878
IUBMB Life. 2016 Jun;68(6):468-76
pubmed: 27118613
Neural Regen Res. 2017 Jan;12(1):96-102
pubmed: 28250754
Neurol Res. 2017 Oct;39(10):895-903
pubmed: 28720038
Front Cell Neurosci. 2017 Sep 22;11:285
pubmed: 29018330
Cell Physiol Biochem. 2017;44(1):85-98
pubmed: 29130998
Neuroscience. 2018 Jul 1;382:154-156
pubmed: 29752925
Cell Physiol Biochem. 2018;47(2):604-616
pubmed: 29794436