Cooperative Effects in Weak Interactions: Enhancement of Tetrel Bonds by Intramolecular Hydrogen Bonds.
MP2
binding energy
intramolecular hydrogen bonds
non-covalent interactions
tetrel bonds
Journal
Molecules (Basel, Switzerland)
ISSN: 1420-3049
Titre abrégé: Molecules
Pays: Switzerland
ID NLM: 100964009
Informations de publication
Date de publication:
16 Jan 2019
16 Jan 2019
Historique:
received:
03
12
2018
revised:
08
01
2019
accepted:
09
01
2019
entrez:
19
1
2019
pubmed:
19
1
2019
medline:
4
4
2019
Statut:
epublish
Résumé
A series of silyl and germanium complexes containing halogen atoms (fluorine and chlorine atoms) and exhibiting tetrel bonds with Lewis bases were analyzed by means of Møller-Plesset computational theory. Binding energies of germanium derivatives were more negative than silicon ones. Amongst the different Lewis bases utilized, ammonia produced the strongest tetrel bonded complexes in both Ge and Si cases, and substitution of the F atom by Cl led to stronger complexes with an ethylene backbone. However, with phenyl backbones, the fluorosilyl complexes were shown to be less stable than the chlorosilyl ones, but the opposite occurred for halogermanium complexes. In all the cases studied, the presence of a hydroxyl group enhanced the tetrel bond. That effect becomes more remarkable when an intramolecular hydrogen bond between the halogen and the hydrogen atom of the hydroxyl group takes places.
Identifiants
pubmed: 30654469
pii: molecules24020308
doi: 10.3390/molecules24020308
pmc: PMC6359400
pii:
doi:
Substances chimiques
Halogens
0
Lewis Bases
0
Germanium
00072J7XWS
Ammonia
7664-41-7
Silicon
Z4152N8IUI
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Subventions
Organisme : Ministerio de Ciencia e Innovación
ID : Project No. CTQ2015-63997-C2-2-P
Organisme : Comunidad de Madrid
ID : FOTOCARBON, ref S2013/MIT-2841
Références
Chem Rev. 2000 Jan 12;100(1):143-68
pubmed: 11749236
Chemistry. 2003 Sep 22;9(18):4548-55
pubmed: 14502641
Proc Natl Acad Sci U S A. 2004 Nov 30;101(48):16789-94
pubmed: 15557000
Chemistry. 2006 Dec 4;12(35):8952-60
pubmed: 16972291
J Mol Model. 2008 Aug;14(8):699-704
pubmed: 18438691
J Phys Chem A. 2009 Jul 23;113(29):8387-93
pubmed: 19569668
Angew Chem Int Ed Engl. 2009;48(41):7488-99
pubmed: 19746372
Chemistry. 2010 Feb 22;16(8):2442-52
pubmed: 20077531
Chemistry. 2011 May 23;17(22):6034-8
pubmed: 21503980
J Phys Chem A. 2011 Oct 20;115(41):11202-9
pubmed: 21728298
J Mol Model. 2012 Jun;18(6):2461-9
pubmed: 22015592
J Phys Chem A. 2011 Nov 24;115(46):13724-31
pubmed: 22047040
Chemphyschem. 2012 Feb;13(2):496-503
pubmed: 22253208
Phys Chem Chem Phys. 2012 Jul 28;14(28):9880-9
pubmed: 22710354
Acc Chem Res. 2013 Feb 19;46(2):280-8
pubmed: 23135342
Chemphyschem. 2013 Feb 4;14(2):278-94
pubmed: 23303575
Chemphyschem. 2013 Jun 3;14(8):1656-65
pubmed: 23553906
Angew Chem Int Ed Engl. 2013 Nov 18;52(47):12317-21
pubmed: 24123575
Phys Chem Chem Phys. 2014 Aug 14;16(30):15900-9
pubmed: 24964032
Phys Chem Chem Phys. 2014 Aug 28;16(32):17238-52
pubmed: 25017184
Chemphyschem. 2015 Aug 24;16(12):2496-517
pubmed: 26118675
J Chem Theory Comput. 2013 Aug 13;9(8):3263-6
pubmed: 26584086
Phys Chem Chem Phys. 2016 Apr 7;18(13):9148-60
pubmed: 26972057
J Phys Chem A. 2017 Feb 16;121(6):1362-1370
pubmed: 28156104
Phys Chem Chem Phys. 2017 Jun 14;19(23):14884-14896
pubmed: 28561824
J Phys Chem A. 2018 Feb 8;122(5):1369-1377
pubmed: 29320198
Biochemistry. 2018 Jul 17;57(28):4135-4147
pubmed: 29921126
J Comput Chem. 2018 Oct 5;39(26):2183-2195
pubmed: 30298926
New J Chem. 2018 Jul 7;42(13):10489-10492
pubmed: 30505144