Proteogenomics Reveals Novel Reductive Dehalogenases and Methyltransferases Expressed during Anaerobic Dichloromethane Metabolism.

Wood-Ljungdahl pathway anaerobic dichloromethane metabolism methyltransferases proteomics reductive dehalogenases “Candidatus Dichloromethanomonas elyunquensis,” genomics

Journal

Applied and environmental microbiology
ISSN: 1098-5336
Titre abrégé: Appl Environ Microbiol
Pays: United States
ID NLM: 7605801

Informations de publication

Date de publication:
15 03 2019
Historique:
received: 17 11 2018
accepted: 08 01 2019
pubmed: 20 1 2019
medline: 28 2 2020
entrez: 20 1 2019
Statut: epublish

Résumé

Dichloromethane (DCM) is susceptible to microbial degradation under anoxic conditions and is metabolized via the Wood-Ljungdahl pathway; however, mechanistic understanding of carbon-chlorine bond cleavage is lacking. The microbial consortium RM contains the DCM degrader "

Identifiants

pubmed: 30658979
pii: AEM.02768-18
doi: 10.1128/AEM.02768-18
pmc: PMC6414379
pii:
doi:

Substances chimiques

Bacterial Proteins 0
Methylene Chloride 588X2YUY0A
Methyltransferases EC 2.1.1.-

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Informations de copyright

Copyright © 2019 American Society for Microbiology.

Références

PLoS One. 2009;4(5):e5584
pubmed: 19440302
Genome Announc. 2016 Mar 03;4(2):
pubmed: 26941136
Appl Environ Microbiol. 1988 Nov;54(11):2819-24
pubmed: 3145712
Proc Natl Acad Sci U S A. 2004 Jan 13;101(2):446-51
pubmed: 14699043
Environ Sci Technol. 2003 Jan 15;37(2):343-51
pubmed: 12564907
Appl Environ Microbiol. 2006 Apr;72(4):2765-74
pubmed: 16597981
Int J Syst Evol Microbiol. 2013 Feb;63(Pt 2):625-35
pubmed: 22544797
Proc Natl Acad Sci U S A. 2014 Apr 29;111(17):6419-24
pubmed: 24733917
Appl Environ Microbiol. 2012 Feb;78(4):1288-91
pubmed: 22179245
Proc Natl Acad Sci U S A. 2006 Dec 12;103(50):18928-33
pubmed: 17138671
Mol Microbiol. 2003 Sep;49(5):1377-90
pubmed: 12940994
Appl Microbiol Biotechnol. 2009 Jun;83(4):775-81
pubmed: 19347335
Environ Microbiol. 2010 Apr;12(4):1053-60
pubmed: 20089043
J Proteome Res. 2013 Feb 1;12(2):796-807
pubmed: 23256564
Proc Natl Acad Sci U S A. 1990 Aug;87(15):5598-602
pubmed: 11607093
Appl Environ Microbiol. 2005 Dec;71(12):8257-64
pubmed: 16332811
Annu Rev Microbiol. 1986;40:415-50
pubmed: 3096193
Microbiology. 2011 Aug;157(Pt 8):2410-2421
pubmed: 21622524
PLoS Genet. 2009 Nov;5(11):e1000714
pubmed: 19893622
Sci Total Environ. 2017 Mar 1;581-582:640-648
pubmed: 28063652
Appl Environ Microbiol. 2004 Jun;70(6):3785-8
pubmed: 15184193
Nucleic Acids Res. 2004 Feb 25;32(4):1363-71
pubmed: 14985472
Nucleic Acids Res. 2001 Jan 1;29(1):41-3
pubmed: 11125044
J Proteome Res. 2007 May;6(5):1745-57
pubmed: 17385904
FEMS Microbiol Lett. 2009 May;294(2):198-206
pubmed: 19341394
J Proteome Res. 2012 Dec 7;11(12):6008-18
pubmed: 23126408
Environ Sci Technol. 2018 Aug 7;52(15):8607-8616
pubmed: 29975517
Nat Methods. 2011 Sep 29;8(10):785-6
pubmed: 21959131
Appl Environ Microbiol. 1996 Feb;62(2):340-6
pubmed: 8593039
Science. 2005 Jan 7;307(5706):105-8
pubmed: 15637277
Trends Biochem Sci. 1999 Jan;24(1):34-6
pubmed: 10087920
Nat Biotechnol. 2005 Oct;23(10):1269-73
pubmed: 16116419
Anal Bioanal Chem. 2017 Oct;409(25):5955-5964
pubmed: 28799108
Environ Sci Technol. 2007 Feb 1;41(3):963-70
pubmed: 17328210
Appl Environ Microbiol. 2008 May;74(9):2864-72
pubmed: 18310438
Mol Cell Proteomics. 2006 Jun;5(6):1054-71
pubmed: 16524964
Res Microbiol. 2011 Nov;162(9):869-76
pubmed: 21288483
Environ Microbiol. 2012 Apr;14(4):883-94
pubmed: 22118646
Syst Appl Microbiol. 2017 Apr;40(3):150-159
pubmed: 28292625
Appl Environ Microbiol. 1991 Oct;57(10):2847-57
pubmed: 1746945
Biochim Biophys Acta. 2008 Dec;1784(12):1873-98
pubmed: 18801467
Proteomics. 2013 Oct;13(18-19):2921-30
pubmed: 23894087
Philos Trans R Soc Lond B Biol Sci. 2013 Mar 11;368(1616):20120322
pubmed: 23479752
J Proteome Res. 2010 Dec 3;9(12):6615-22
pubmed: 20954746
Nature. 2015 Jan 22;517(7535):513-516
pubmed: 25327251
Nucleic Acids Res. 2016 Jan 4;44(D1):D457-62
pubmed: 26476454
Appl Microbiol Biotechnol. 2017 Jul;101(13):5481-5492
pubmed: 28424844
Environ Microbiol Rep. 2016 Oct;8(5):814-824
pubmed: 27452500
J Proteome Res. 2007 Feb;6(2):654-61
pubmed: 17269722
Appl Environ Microbiol. 2014 Jul;80(14):4313-22
pubmed: 24814779
Appl Environ Microbiol. 1995 Aug;61(8):2943-9
pubmed: 16535097
J Am Soc Mass Spectrom. 2007 May;18(5):898-909
pubmed: 17360194
Nucleic Acids Res. 2016 Jan 4;44(D1):D279-85
pubmed: 26673716
Nucleic Acids Res. 2012 Jan;40(Database issue):D115-22
pubmed: 22194640
Nat Commun. 2017 Jun 27;8:15962
pubmed: 28654085
Nucleic Acids Res. 2000 Jan 1;28(1):33-6
pubmed: 10592175
Appl Environ Microbiol. 1998 Feb;64(2):646-50
pubmed: 16349505
Genome Announc. 2017 Sep 14;5(37):
pubmed: 28912314
J Proteome Res. 2015 Jan 2;14(1):133-41
pubmed: 25350865
Appl Environ Microbiol. 1996 Oct;62(10):3809-13
pubmed: 16535425
J Biol Chem. 1963 Aug;238:2882-6
pubmed: 14063318
Nucleic Acids Res. 1994 Nov 11;22(22):4673-80
pubmed: 7984417
Syst Appl Microbiol. 2005 Sep;28(7):582-7
pubmed: 16156115
Environ Microbiol. 2017 Nov;19(11):4784-4796
pubmed: 28967177
ISME J. 2012 Feb;6(2):410-21
pubmed: 21881617
J Mol Biol. 1990 Oct 5;215(3):403-10
pubmed: 2231712
Appl Environ Microbiol. 1993 Nov;59(11):3790-7
pubmed: 8285685
Environ Health Perspect. 1995 Jun;103 Suppl 5:33-6
pubmed: 8565906
Mol Microbiol. 2008 Sep;69(6):1349-57
pubmed: 18643934
Nucleic Acids Res. 2016 Jan 4;44(D1):D286-93
pubmed: 26582926
Appl Environ Microbiol. 2013 Nov;79(22):6941-7
pubmed: 23995945

Auteurs

Sara Kleindienst (S)

Center for Applied Geosciences, Eberhard Karls University of Tübingen, Tübingen, Germany sara.kleindienst@uni-tuebingen.de frank.loeffler@utk.edu.
Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA.
Department of Microbiology, University of Tennessee, Knoxville, Tennessee, USA.
Center for Environmental Biotechnology, University of Tennessee, Knoxville, Tennessee, USA.

Karuna Chourey (K)

Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA.

Gao Chen (G)

Center for Environmental Biotechnology, University of Tennessee, Knoxville, Tennessee, USA.
Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, Tennessee, USA.

Robert W Murdoch (RW)

Center for Environmental Biotechnology, University of Tennessee, Knoxville, Tennessee, USA.

Steven A Higgins (SA)

Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA.
Department of Microbiology, University of Tennessee, Knoxville, Tennessee, USA.
Center for Environmental Biotechnology, University of Tennessee, Knoxville, Tennessee, USA.

Ramsunder Iyer (R)

Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA.
Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, Tennessee, USA.

Shawn R Campagna (SR)

Department of Chemistry, University of Tennessee, Knoxville, Tennessee, USA.

E Erin Mack (EE)

Corporate Remediation Group, E. I. DuPont de Nemours and Company, Wilmington, Delaware, USA.

Edward S Seger (ES)

Corporate Remediation Group, The Chemours Company, Wilmington, Delaware, USA.

Robert L Hettich (RL)

Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA.
Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, Tennessee, USA.

Frank E Löffler (FE)

Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA sara.kleindienst@uni-tuebingen.de frank.loeffler@utk.edu.
Department of Microbiology, University of Tennessee, Knoxville, Tennessee, USA.
Center for Environmental Biotechnology, University of Tennessee, Knoxville, Tennessee, USA.
Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, Tennessee, USA.
Department of Biosystems Engineering and Soil Science, University of Tennessee, Knoxville, Tennessee, USA.
Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, Tennessee, USA.

Articles similaires

Photosynthesis Ribulose-Bisphosphate Carboxylase Carbon Dioxide Molecular Dynamics Simulation Cyanobacteria
Animals Hemiptera Insect Proteins Phylogeny Insecticides

Two codependent routes lead to high-level MRSA.

Abimbola Feyisara Adedeji-Olulana, Katarzyna Wacnik, Lucia Lafage et al.
1.00
Methicillin-Resistant Staphylococcus aureus Penicillin-Binding Proteins Peptidoglycan Bacterial Proteins Anti-Bacterial Agents
Cicer Germination Proteolysis Seeds Plant Proteins

Classifications MeSH