A genetic risk score for hypertension is associated with risk of thoracic aortic aneurysm.
Aged
Aortic Aneurysm, Thoracic
/ diagnostic imaging
Blood Pressure
/ genetics
Female
Gene Expression Profiling
Genetic Predisposition to Disease
Humans
Hypertension
/ diagnosis
Incidence
Male
Middle Aged
Phenotype
Polymorphism, Single Nucleotide
Prospective Studies
Risk Assessment
Risk Factors
Sweden
/ epidemiology
Time Factors
Transcriptome
Journal
Journal of human hypertension
ISSN: 1476-5527
Titre abrégé: J Hum Hypertens
Pays: England
ID NLM: 8811625
Informations de publication
Date de publication:
09 2019
09 2019
Historique:
received:
20
08
2018
accepted:
17
12
2018
revised:
17
11
2018
pubmed:
20
1
2019
medline:
15
9
2020
entrez:
20
1
2019
Statut:
ppublish
Résumé
A genetic risk score (GRS) based on 29 single nucleotide polymorpysms (SNPs) associated with high blood pressure (BP) was prospectively associated with development of hypertension, stroke and cardiovascular events. The aim of the present study was to evaluate the impact of this GRS on the incidence of aortic disease, including aortic dissection (AD), rupture or surgery of a thoracic (TAA) or abdominal (AAA) aortic aneurysm. More than 25,000 people from the Swedish Malmo Diet and Cancer Study had information on at least 24 SNPs and were followed up for a median ≥ 18 years. The number of BP elevating alleles of each SNPs, weighted by their effect size in the discovery studies, was summed into a BP-GRS. In Cox regression models, adjusted for traditional cardiovascular risk factors including hypertension, we found significant associations of the BP-GRS, prospectively, with incident TAA (hazard ratio (HR) 1.64 (95% confidence interval (CI) 1.081-2.475 comparing the third vs. the first tertile; p = 0.020) but not with either AAA or aortic dissection. Calibration, discrimination and reclassification analyses show modest improvement in prediction using the BP-GRS in addition to the model which used only traditional risk factors. A GRS for hypertension associates with TAA suggesting a link between genetic determinants of BP and aortic disease. The effect size is small but the addition of more SNPs to the GRS might improve its discriminatory capability.
Identifiants
pubmed: 30659280
doi: 10.1038/s41371-018-0159-6
pii: 10.1038/s41371-018-0159-6
doi:
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
658-663Références
Erbel R, Aboyans V, Boileau C, Bossone E, Di Bartolomeo R, Eggebrecht H. et al. ESC guidelines on the diagnosis and treatment of aortic diseases [Internet]. Eur Heart J. 2014;35:2873–926.
doi: 10.1093/eurheartj/ehu281
Sampson UKA, Norman PE, Fowkes FGR, Aboyans V, Song Y, Harrell FE. et al. Estimation of global and regional incidence and prevalence of abdominal aortic aneurysms 1990 to 2010 [Internet]. Global Heart . 2014;9:159–70.
doi: 10.1016/j.gheart.2013.12.009
Sampson UKA, Norman PE, Fowkes FGR, Aboyans V, Song Y, Harrell FE. et al. Global and regional burden of aortic dissection and aneurysms: mortality trends in 21 world regions, 1990 to 2010. Global Heart . 2014;9:171–80.
doi: 10.1016/j.gheart.2013.12.010
Golledge J, Muller J, Daugherty A, Norman P. Abdominal aortic aneurysm: pathogenesis and implications for management. Arterioscler Thromb Vasc Biol. 2006;26:2605–13.
doi: 10.1161/01.ATV.0000245819.32762.cb
Moll FL, Powell JT, Fraedrich G, Verzini F, Haulon S, Waltham M. et al. Management of abdominal aortic aneurysms clinical practice guidelines of the european society for vascular surgery. Eur J Vasc Endovasc Surg. 2017;41:S1–58.
doi: 10.1016/j.ejvs.2010.09.011
Tsai TT, Trimarchi S, Nienaber CA. Acute aortic dissection: perspectives from the International Registry of Acute Aortic Dissection (IRAD). Eur J Vasc Endovasc Surg. 2017;37:149–59.
doi: 10.1016/j.ejvs.2008.11.032
Howard DPJ, Banerjee A, Fairhead JF, Perkins J, Silver LE, Rothwell PM. Population-based study of incidence and outcome of acute aortic dissection and premorbid risk factor control: 10-year results from the oxford vascular study. Circulation. 2017;127:2031–7.
doi: 10.1161/CIRCULATIONAHA.112.000483
Klompas M.Does this Patient have acute Thorac aortic dissection? JAMA. 2017;287:2262–72.
doi: 10.1001/jama.287.17.2262
Hiratzka LF, Bakris GL, Beckman JA, Bersin RM, Carr VF, Casey DE. et al. ACCF/AHA/AATS/ACR/ASA/SCA/SCAI/SIR/STS/SVM Guidelines for the Diagnosis and Management of Patients With Thoracic Aortic Disease. J Am Coll Cardiol. 2010;55:e27–9.
doi: 10.1016/j.jacc.2010.02.015
Fava C, Burri P, Almgren P, Groop L, Hulthén UL, Melander O. Heritability of ambulatory and office blood pressure phenotypes in Swedish families. J Hypertens. 2004;22:1717–21.
doi: 10.1097/00004872-200409000-00015
Ehret GB, Munroe PB, Rice KM, Bochud M, Johnson AD, Chasman DI. et al. Genetic variants in novel pathways influence blood pressure and cardiovascular disease risk. Nature. 2011;478:103–9.
doi: 10.1038/nature10405
Levy D, Ehret GB, Rice K, Verwoert GC, Launer LJ, Dehghan A. et al. Genome-wide association study of blood pressure and hypertension. Nat Genet. 2009;41:677–87.
doi: 10.1038/ng.384
Newton-Cheh C, Johnson T, Gateva V, Tobin MD, Bochud M, Coin L. et al. Genome-wide association study identifies eight loci associated with blood pressure. Nat Genet. 2009;41:666–76.
doi: 10.1038/ng.361
Padmanabhan S, Melander O, Johnson T, Di Blasio AM, Lee WK, Gentilini D, et al. Genome-wide association study of blood pressure extremes identifies variant near UMOD associated with hypertension. Schork NJ, editor. PLoS Genet. 2010;6:e1001177.
Surendran P, Drenos F, Young R, Warren H, Cook JP, Manning AK. et al. Trans-ancestry meta-analyses identify rare and common variants associated with blood pressure and hypertension. Nat Genet. 2016;48:1151–61.
doi: 10.1038/ng.3654
Ehret GB, Ferreira T, Chasman DI, Jackson AU, Schmidt EM, Johnson T, et al. The genetics of blood pressure regulation and its target organs from association studies in 342,415 individuals. Nat Genet. 2016;48:1171–84.
Fava C, Sjogren M, Montagnana M, Danese E, Almgren P, Engstrom G. et al. Prediction of blood pressure changes over time and incidence of hypertension by a genetic risk score in Swedes. Hypertension. 2013;61:319–26.
doi: 10.1161/HYPERTENSIONAHA.112.202655
Fava C, Sjögren M, Olsson S, Lövkvist H, Jood K, Engström G. et al. A genetic risk score for hypertension associates with the risk of ischemic stroke in a Swedish case-control study. Eur J Hum Genet. 2015;23:969–74.
doi: 10.1038/ejhg.2014.212
Fava C, Ohlsson T, Sjogren M, Tagetti A, Almgren P, Engstrom G. et al. Cardiovascular consequences of a polygenetic component of blood pressure in an urban-based longitudinal study: the Malmo diet and cancer. J Hypertens. 2014;32:1424–8.
doi: 10.1097/HJH.0000000000000209
Landenhed M, Engstrom G, Gottsater A, Caulfield MP, Hedblad B, Newton-Cheh C. et al. Risk profiles for aortic dissection and ruptured or surgically treated aneurysms: a prospective cohort study. J Am Hear Assoc. 2015;4:e001513.
Smith JG, Platonov PG, Hedblad B, Engström G, Melander O. Atrial fibrillation in the Malmö Diet and Cancer study: a study of occurrence, risk factors and diagnostic validity. Eur J Epidemiol. 2010;25:95–102.
doi: 10.1007/s10654-009-9404-1
Fava C, Ohlsson T, Sjögren M, Tagetti A, Almgren P, Engström G, et al. Cardiovascular consequences of a polygenetic component of blood pressure in an urban-based longitudinal study: The Malmo Diet and Cancer. J Hypertens. 2014;32:1424–8.
Riboli E, Elmståhl S, Saracci R, Gullberg B, Lindgärde F. The Malmo Food Study: validity of two dietary assessment methods for measuring nutrient intake. Int J Epidemiol. 1997;26:161S–173.
doi: 10.1093/ije/26.suppl_1.S161
Ehret GB. Genome-wide association studies: contribution of genomics to understanding blood pressure and essential hypertension. Curr Hypertens Rep. 2010;12:17–25.
doi: 10.1007/s11906-009-0086-6
Fava C, Sjögren M, Montagnana M, Danese E, Almgren P, Engström G. et al. Prediction of blood pressure changes over time and incidence of hypertension by a genetic risk score in Swedes. Hypertension. 2013;61:319–26.
doi: 10.1161/HYPERTENSIONAHA.112.202655
Ludvigsson JF, Otterblad-Olausson P, Pettersson BU, Ekbom A. The Swedish personal identity number: possibilities and pitfalls in healthcare and medical research. Eur J Epidemiol. 2009;24:659–67.
Ludvigsson JF, Andersson E, Ekbom A, Feychting M, Kim J-L, Reuterwall C, et al. External review and validation of the Swedish national inpatient register. BMC Public Health. 2011;11:450.
Johansson LA, Westerling R. Comparing Swedish hospital discharge records with death certificates: implications for mortality statistics. Int J Epidemiol. 2000;29:495–502.
doi: 10.1093/ije/29.3.495
Hosmer DW, Hosmer T, Le Cessie S, Lemeshow S. A comparison of goodness-of-fit tests for the logistic regression model. Stat Med. 1997;16:965–80.
doi: 10.1002/(SICI)1097-0258(19970515)16:9<965::AID-SIM509>3.0.CO;2-O
Pencina MJ, D’Agostino RB, D’Agostino RB, Vasan RS. Evaluating the added predictive ability of a new marker: From area under the ROC curve to reclassification and beyond. Stat Med. 2008;27:157–72.
doi: 10.1002/sim.2929
Pencina MJ, D’Agostino RB, Steyerberg EW. Extensions of net reclassification improvement calculations to measure usefulness of new biomarkers. Stat Med. 2011;30:11–21.
doi: 10.1002/sim.4085
LeMaire SA, McDonald M-LN, Guo D-C, Russell L, Miller CC, Johnson RJ. et al. Genome-wide association study identifies a susceptibility locus for thoracic aortic aneurysms and aortic dissections spanning FBN1 at 15q21.1. Nat Genet. 2011;43:996–1000.
doi: 10.1038/ng.934
Iakoubova OA, Tong CH, Rowland CM, Luke MM, Garcia VE, Catanese JJ, et al. Genetic variants in FBN-1 and risk for thoracic aortic aneurysm and dissection. Kiechl S, editor. PLoS ONE. 2014;9:e91437.