Pulmonary group 2 innate lymphoid cells: surprises and challenges.


Journal

Mucosal immunology
ISSN: 1935-3456
Titre abrégé: Mucosal Immunol
Pays: United States
ID NLM: 101299742

Informations de publication

Date de publication:
03 2019
Historique:
received: 30 10 2018
accepted: 21 12 2018
revised: 18 12 2018
pubmed: 22 1 2019
medline: 25 6 2019
entrez: 22 1 2019
Statut: ppublish

Résumé

Group 2 innate lymphoid cells (ILC2s) are a recently described subset of innate lymphocytes with important immune and homeostatic functions at multiple tissue sites, especially the lung. These cells expand locally after birth and during postnatal lung maturation and are present in the lung and other peripheral organs. They are modified by a variety of processes and mediate inflammatory responses to respiratory pathogens, inhaled allergens and noxious particles. Here, we review the emerging roles of ILC2s in pulmonary homeostasis and discuss recent and surprising advances in our understanding of how hormones, age, neurotransmitters, environmental challenges, and infection influence ILC2s. We also review how these responses may underpin the development, progression and severity of pulmonary inflammation and chronic lung diseases and highlight some of the remaining challenges for ILC2 biology.

Identifiants

pubmed: 30664706
doi: 10.1038/s41385-018-0130-4
pii: S1933-0219(22)00379-8
pmc: PMC6436699
mid: EMS82232
doi:

Substances chimiques

Cytokines 0
Hormones 0
Neurotransmitter Agents 0

Types de publication

Journal Article Research Support, Non-U.S. Gov't Review

Langues

eng

Sous-ensembles de citation

IM

Pagination

299-311

Subventions

Organisme : Medical Research Council
ID : MC_U105178805
Pays : United Kingdom

Références

Neill, D. R. et al. Nuocytes represent a new innate effector leukocyte that mediates type-2 immunity. Nature 464, 1367–1370 (2010).
pubmed: 20200518 pmcid: 2862165 doi: 10.1038/nature08900
Halim, T. Y. et al. Group 2 innate lymphoid cells are critical for the initiation of adaptive T helper 2 cell-mediated allergic lung inflammation. Immunity 40, 425–435 (2014).
pubmed: 24613091 pmcid: 4210641 doi: 10.1016/j.immuni.2014.01.011
Spits, H. et al. Innate lymphoid cells--a proposal for uniform nomenclature. Nat. Rev. Immunol. 13, 145–149 (2013).
pubmed: 23348417 doi: 10.1038/nri3365
Bar-Ephraim, Y. E. & Mebius, R. E. Innate lymphoid cells in secondary lymphoid organs. Immunol. Rev. 271, 185–199 (2016).
pubmed: 27088915 doi: 10.1111/imr.12407
Monticelli, L. A. et al. Innate lymphoid cells promote lung-tissue homeostasis after infection with influenza virus. Nat. Immunol. 12, 1045–1054 (2011).
pubmed: 21946417 pmcid: 3320042 doi: 10.1038/ni.2131
Sonnenberg, G. F., Fouser, L. A. & Artis, D. Border patrol: regulation of immunity, inflammation and tissue homeostasis at barrier surfaces by IL-22. Nat. Immunol. 12, 383–390 (2011).
doi: 10.1038/ni.2025 pubmed: 21502992
Li, Z. et al. Epidermal Notch1 recruits RORgamma(+) group 3 innate lymphoid cells to orchestrate normal skin repair. Nat. Commun. 7, 11394 (2016).
pubmed: 27099134 pmcid: 4844683 doi: 10.1038/ncomms11394
Lee, M. W. et al. Activated type 2 innate lymphoid cells regulate beige fat biogenesis. Cell 160, 74–87 (2015).
pubmed: 25543153 doi: 10.1016/j.cell.2014.12.011
Sanos, S. L., Vonarbourg, C., Mortha, A. & Diefenbach, A. Control of epithelial cell function by interleukin-22-producing RORgammat+innate lymphoid cells. Immunology 132, 453–465 (2011).
pubmed: 21391996 pmcid: 3075499 doi: 10.1111/j.1365-2567.2011.03410.x
Sawa, S. et al. RORgammat+innate lymphoid cells regulate intestinal homeostasis by integrating negative signals from the symbiotic microbiota. Nat. Immunol. 12, 320–326 (2011).
pubmed: 21336274 doi: 10.1038/ni.2002
Sonnenberg, G. F. et al. Innate lymphoid cells promote anatomical containment of lymphoid-resident commensal bacteria. Science 336, 1321–1325 (2012).
pubmed: 22674331 pmcid: 3659421 doi: 10.1126/science.1222551
Gladiator, A., Wangler, N., Trautwein-Weidner, K. & LeibundGut-Landmann, S. Cutting edge: IL-17-secreting innate lymphoid cells are essential for host defense against fungal infection. J. Immunol. 190, 521–525 (2013).
pubmed: 23255360 doi: 10.4049/jimmunol.1202924
Bal, S. M. et al. IL-1beta, IL-4 and IL-12 control the fate of group 2 innate lymphoid cells in human airway inflammation in the lungs. Nat. Immunol. 17, 636–645 (2016).
doi: 10.1038/ni.3444 pubmed: 27111145
Silver, J. S. et al. Inflammatory triggers associated with exacerbations of COPD orchestrate plasticity of group 2 innate lymphoid cells in the lungs. Nat. Immunol. 17, 626–635 (2016).
pubmed: 27111143 pmcid: 5345745 doi: 10.1038/ni.3443
Walker, J. A. & McKenzie, A. N. J. TH2 cell development and function. Nat. Rev. Immunol. 18, 121–133 (2018).
pubmed: 29082915 doi: 10.1038/nri.2017.118
Mattner, J. & Wirtz, S. Friend or Foe? The ambiguous role of innate lymphoid cells in cancer development. Trends Immunol. 38, 29–38 (2017).
pubmed: 27810463 doi: 10.1016/j.it.2016.10.004
Huang, Y. et al. IL-25-responsive, lineage-negative KLRG1(hi) cells are multipotential ‘inflammatory’ type 2 innate lymphoid cells. Nat. Immunol. 16, 161–169 (2015).
pubmed: 25531830 doi: 10.1038/ni.3078
Huang, Y. et al. S1P-dependent interorgan trafficking of group 2 innate lymphoid cells supports host defense. Science (New York, NY) 359, 114–119 (2018).
doi: 10.1126/science.aam5809
Huang, Y. & Paul, W. E. Inflammatory group 2 innate lymphoid cells. Int. Immunol. 28, 23–28 (2016).
pubmed: 26232596
Hoyler, T. et al. The transcription factor GATA-3 controls cell fate and maintenance of type 2 innate lymphoid cells. Immunity 37, 634–648 (2012).
pubmed: 23063333 pmcid: 3662874 doi: 10.1016/j.immuni.2012.06.020
Mjosberg, J. et al. The transcription factor GATA3 is essential for the function of human type 2 innate lymphoid cells. Immunity 37, 649–659 (2012).
pubmed: 23063330 doi: 10.1016/j.immuni.2012.08.015
Li, B. W. S. et al. Group 2 innate lymphoid cells exhibit a dynamic phenotype in allergic airway inflammation. Front. Immunol. 8, 1684 (2017).
pubmed: 29250067 pmcid: 5716969 doi: 10.3389/fimmu.2017.01684
Klein Wolterink, R. G. et al. Essential, dose-dependent role for the transcription factor Gata3 in the development of IL-5+and IL-13+type 2 innate lymphoid cells. Proc. Natl Acad. Sci. USA 110, 10240–10245 (2013).
pubmed: 23733962 doi: 10.1073/pnas.1217158110 pmcid: 3690884
Wong, S. H. et al. Transcription factor ROR alpha is critical for nuocyte development. Nat. Immunol. 13, 229–236 (2012).
pubmed: 22267218 pmcid: 3343633 doi: 10.1038/ni.2208
Gentek, R. et al. Modulation of signal strength switches notch from an inducer of T cells to an inducer of ILC2. Front. Immunol. 4, 334 (2013).
pubmed: 24155745 pmcid: 3804867 doi: 10.3389/fimmu.2013.00334
Seillet, C. et al. Nfil3 is required for the development of all innate lymphoid cell subsets. J. Exp. Med. 211, 1733–1740 (2014).
pubmed: 25092873 pmcid: 4144736 doi: 10.1084/jem.20140145
Geiger, T. L. et al. Nfil3 is crucial for development of innate lymphoid cells and host protection against intestinal pathogens. J. Exp. Med. 211, 1723–1731 (2014).
pubmed: 25113970 pmcid: 4144732 doi: 10.1084/jem.20140212
Mielke, L. A. et al. TCF-1 controls ILC2 and NKp46+RORgammat+innate lymphocyte differentiation and protection in intestinal inflammation. J. Immunol. 191, 4383–4391 (2013).
pubmed: 24038093 doi: 10.4049/jimmunol.1301228
Yang, Q. et al. T cell factor 1 is required for group 2 innate lymphoid cell generation. Immunity 38, 694–704 (2013).
pubmed: 23601684 pmcid: 4029843 doi: 10.1016/j.immuni.2012.12.003
Spooner, C. J. et al. Specification of type 2 innate lymphocytes by the transcriptional determinant Gfi1. Nat. Immunol. 14, 1229–1236 (2013).
pubmed: 24141388 doi: 10.1038/ni.2743
Wang, H. C. et al. Downregulation of E protein activity augments an ILC2 differentiation program in the thymus. J. Immunol. (Baltim., Md: 1950) 198, 3149–3156 (2017).
doi: 10.4049/jimmunol.1602009
Walker, J. A. & McKenzie, A. N. Development and function of group 2 innate lymphoid cells. Curr. Opin. Immunol. 25, 148–155 (2013).
pubmed: 23562755 pmcid: 3776222 doi: 10.1016/j.coi.2013.02.010
Stier, M. T. et al. IL-33 promotes the egress of group 2 innate lymphoid cells from the bone marrow. J. Exp. Med. 215, 263–281 (2018).
pubmed: 29222107 pmcid: 5748848 doi: 10.1084/jem.20170449
Miyazaki, M. et al. The E-Id protein axis specifies adaptive lymphoid cell identity and suppresses thymic innate lymphoid cell development. Immunity 46, 818–834.e814 (2017).
pubmed: 28514688 pmcid: 5512722 doi: 10.1016/j.immuni.2017.04.022
Seillet, C. et al. Deciphering the innate lymphoid cell transcriptional program. Cell Rep. 17, 436–447 (2016).
pubmed: 27705792 doi: 10.1016/j.celrep.2016.09.025
Yu, Y. et al. Single-cell RNA-seq identifies a PD-1(hi) ILC progenitor and defines its development pathway. Nature 539, 102–106 (2016).
pubmed: 27749818 doi: 10.1038/nature20105
Taylor, S. et al. PD-1 regulates KLRG1(+) group 2 innate lymphoid cells. J. Exp. Med. 214, 1663–1678 (2017).
pubmed: 28490441 pmcid: 5461001 doi: 10.1084/jem.20161653
Schwartz, C. et al. ILC2s regulate adaptive Th2 cell functions via PD-L1 checkpoint control. J. Exp. Med. 214, 2507–2521 (2017).
pubmed: 28747424 pmcid: 5584124 doi: 10.1084/jem.20170051
Starkey, M. R. et al. Programmed death ligand 1 promotes early-life chlamydia respiratory infection-induced severe allergic airway disease. Am. J. Respir. Cell Mol. Biol. 54, 493–503 (2016).
pubmed: 26378990 doi: 10.1165/rcmb.2015-0204OC
Starkey, M. R. et al. Constitutive production of IL-13 promotes early-life Chlamydia respiratory infection and allergic airway disease. Mucosal Immunol. 6, 569–579 (2013).
pubmed: 23131786 doi: 10.1038/mi.2012.99
Gollwitzer, E. S. et al. Lung microbiota promotes tolerance to allergens in neonates via PD-L1. Nat. Med. 20, 642–647 (2014).
pubmed: 24813249 doi: 10.1038/nm.3568
Gury-BenAri, M. et al. The spectrum and regulatory landscape of intestinal innate lymphoid cells are shaped by the microbiome. Cell 166, 1231–1246.e1213 (2016).
pubmed: 27545347 doi: 10.1016/j.cell.2016.07.043
Lim, A. I. et al. Systemic human ILC precursors provide a substrate for tissue ILC differentiation. Cell 168, 1086–1100.e1010 (2017).
pubmed: 28283063 doi: 10.1016/j.cell.2017.02.021
Robinette, M. L. et al. Transcriptional programs define molecular characteristics of innate lymphoid cell classes and subsets. Nat. Immunol. 16, 306–317 (2015).
pubmed: 25621825 pmcid: 4372143 doi: 10.1038/ni.3094
Chea, S. et al. Single-cell gene expression analyses reveal heterogeneous responsiveness of fetal innate lymphoid progenitors to notch signaling. Cell Rep. 14, 1500–1516 (2016).
pubmed: 26832410 doi: 10.1016/j.celrep.2016.01.015
Shih, H. Y. et al. Developmental acquisition of regulomes underlies innate lymphoid cell functionality. Cell 165, 1120–1133 (2016).
pubmed: 27156451 pmcid: 4874839 doi: 10.1016/j.cell.2016.04.029
Koues, O. I. et al. Distinct gene regulatory pathways for human innate versus adaptive lymphoid cells. Cell 165, 1134–1146 (2016).
pubmed: 27156452 pmcid: 4874868 doi: 10.1016/j.cell.2016.04.014
Bjorklund, A. K. et al. The heterogeneity of human CD127(+) innate lymphoid cells revealed by single-cell RNA sequencing. Nat. Immunol. 17, 451–460 (2016).
pubmed: 26878113 doi: 10.1038/ni.3368
Vivier, E. et al. Innate lymphoid cells: 10 years on. Cell 174, 1054–1066 (2018).
pubmed: 30142344 doi: 10.1016/j.cell.2018.07.017
Krabbendam, L., Bal, S. M., Spits, H. & Golebski, K. New insights into the function, development, and plasticity of type 2 innate lymphoid cells. Immunol. Rev. 286, 74–85 (2018).
pubmed: 30294969 doi: 10.1111/imr.12708
Bernink, J. H. et al. Interleukin-12 and -23 control plasticity of CD127(+) Group 1 and Group 3 innate lymphoid cells in the intestinal lamina propria. Immunity 43, 146–160 (2015).
pubmed: 26187413 doi: 10.1016/j.immuni.2015.06.019
Cella, M., Otero, K. & Colonna, M. Expansion of human NK-22 cells with IL-7, IL-2, and IL-1beta reveals intrinsic functional plasticity. Proc. Natl Acad. Sci. USA 107, 10961–10966 (2010).
pubmed: 20534450 doi: 10.1073/pnas.1005641107 pmcid: 2890739
Okuda, Y. et al. [A Retrospective Investigation of Lacrimation in Patients Treated with S-1]. Gan. To. Kagaku. Ryoho. 45, 265–268 (2018).
pubmed: 29483417
Vonarbourg, C. et al. Regulated expression of nuclear receptor RORgammat confers distinct functional fates to NK cell receptor-expressing RORgammat(+) innate lymphocytes. Immunity 33, 736–751 (2010).
pubmed: 21093318 pmcid: 3042726 doi: 10.1016/j.immuni.2010.10.017
Klose, C. S. et al. Differentiation of type 1 ILCs from a common progenitor to all helper-like innate lymphoid cell lineages. Cell 157, 340–356 (2014).
pubmed: 24725403 doi: 10.1016/j.cell.2014.03.030
Rankin, L. C. et al. The transcription factor T-bet is essential for the development of NKp46(+) innate lymphocytes via the Notch pathway. Nat. Immunol. 14, 389–395 (2013).
pubmed: 23455676 pmcid: 4076532 doi: 10.1038/ni.2545
Sciume, G. et al. Distinct requirements for T-bet in gut innate lymphoid cells. J. Exp. Med. 209, 2331–2338 (2012).
pubmed: 23209316 pmcid: 3526352 doi: 10.1084/jem.20122097
Viant, C. et al. Transforming growth factor-beta and Notch ligands act as opposing environmental cues in regulating the plasticity of type 3 ILCs. Sci. Signal. 9, ra46 (2016).
pubmed: 27141930 doi: 10.1126/scisignal.aaf2176
Lee, J. S. et al. AHR drives the development of gut ILC22 cells and postnatal lymphoid tissues via pathways dependent on and independent of Notch. Nat. Immunol. 13, 144–151 (2011).
pubmed: 22101730 pmcid: 3468413 doi: 10.1038/ni.2187
Zhang, K. et al. Notch signaling promotes the plasticity of Group-2 innate lymphoid cells. J. Immunol. 198, 1798–1803 (2018).
doi: 10.4049/jimmunol.1601421
Ohne, Y. et al. IL-1 is a critical regulator of group 2 innate lymphoid cell function and plasticity. Nat. Immunol. 17, 646–655 (2016).
pubmed: 27111142 doi: 10.1038/ni.3447
Lim, A. I. et al. IL-12 drives functional plasticity of human group 2 innate lymphoid cells. J. Exp. Med. 213, 569–583 (2016).
pubmed: 26976630 pmcid: 4821648 doi: 10.1084/jem.20151750
Ricardo-Gonzalez, R. R. et al. Tissue signals imprint ILC2 identity with anticipatory function. Nat. Immunol. 19, 1093–1099 (2018).
pubmed: 30201992 pmcid: 6202223 doi: 10.1038/s41590-018-0201-4
Freud, A. G. & Caligiuri, M. A. Human natural killer cell development. Immunol. Rev. 214, 56–72 (2006).
pubmed: 17100876 doi: 10.1111/j.1600-065X.2006.00451.x
Simoni, Y. et al. Human innate lymphoid cell subsets possess tissue-type based heterogeneity in phenotype and frequency. Immunity 46, 148–161 (2017).
pubmed: 27986455 doi: 10.1016/j.immuni.2016.11.005
Scoville, S. D. et al. A progenitor cell expressing transcription factor rorgammat generates all human innate lymphoid cell subsets. Immunity 44, 1140–1150 (2016).
pubmed: 27178467 pmcid: 4893782 doi: 10.1016/j.immuni.2016.04.007
Serafini, N. et al. Gata3 drives development of RORgammat+group 3 innate lymphoid cells. J. Exp. Med. 211, 199–208 (2014).
pubmed: 24419270 pmcid: 3920560 doi: 10.1084/jem.20131038
Yagi, R. et al. The transcription factor GATA3 is critical for the development of all IL-7Ralpha-expressing innate lymphoid cells. Immunity 40, 378–388 (2014).
pubmed: 24631153 pmcid: 4026797 doi: 10.1016/j.immuni.2014.01.012
Rauber, S. et al. Resolution of inflammation by interleukin-9-producing type 2 innate lymphoid cells. Nat. Med. 23, 938–944 (2017).
pubmed: 28714991 pmcid: 5575995 doi: 10.1038/nm.4373
Lai, D. et al. Group 2 innate lymphoid cells protect lung endothelial cells from pyroptosis in sepsis. Cell death & Dis. 9, 369 (2018).
doi: 10.1038/s41419-018-0412-5
Omata, Y. et al. Group 2 innate lymphoid cells attenuate inflammatory arthritis and protect from bone destruction in mice. Cell Rep. 24, 169–180 (2018).
pubmed: 29972778 doi: 10.1016/j.celrep.2018.06.005
Mohapatra, A. et al. Group 2 innate lymphoid cells utilize the IRF4-IL-9 module to coordinate epithelial cell maintenance of lung homeostasis. Mucosal Immunol. 9, 275–286 (2016).
pubmed: 26129648 doi: 10.1038/mi.2015.59
Gasteiger, G., Fan, X., Dikiy, S., Lee, S. Y. & Rudensky, A. Y. Tissue residency of innate lymphoid cells in lymphoid and nonlymphoid organs. Science (New York, NY) 350, 981–985 (2015).
doi: 10.1126/science.aac9593
Maazi, H. et al. ICOS:ICOS-ligand interaction is required for type 2 innate lymphoid cell function, homeostasis, and induction of airway hyperreactivity. Immunity 42, 538–551 (2015).
pubmed: 25769613 pmcid: 4366271 doi: 10.1016/j.immuni.2015.02.007
Molofsky, A. B. et al. Interleukin-33 and interferon-gamma counter-regulate Group 2 innate lymphoid cell activation during immune perturbation. Immunity 43, 161–174 (2015).
pubmed: 26092469 pmcid: 4512852 doi: 10.1016/j.immuni.2015.05.019
Rigas, D. et al. Type 2 innate lymphoid cell suppression by regulatory T cells attenuates airway hyperreactivity and requires inducible T-cell costimulator-inducible T-cell costimulator ligand interaction. J. Allergy Clin. Immunol. 139, 1468–1477.e1462 (2017).
pubmed: 27717665 doi: 10.1016/j.jaci.2016.08.034
Ogasawara, N. et al. IL-10, TGF-beta, and glucocorticoid prevent the production of type 2 cytokines in human group 2 innate lymphoid cells. J. Allergy Clin. Immunol. 141, 1147–1151.e1148 (2018).
pubmed: 29074458 doi: 10.1016/j.jaci.2017.09.025
Denney, L. et al. Pulmonary epithelial cell-derived cytokine TGF-beta1 is a critical cofactor for enhanced innate lymphoid cell function. Immunity 43, 945–958 (2015).
pubmed: 26588780 pmcid: 4658339 doi: 10.1016/j.immuni.2015.10.012
Halim, T. Y. F. et al. Tissue-restricted adaptive Type 2 immunity is orchestrated by expression of the costimulatory molecule OX40L on Group 2 innate lymphoid cells. Immunity 48, 1195–1207.e1196 (2018).
pubmed: 29907525 pmcid: 6015114 doi: 10.1016/j.immuni.2018.05.003
Scheiermann C., Gibbs J., Ince L., Loudon A. Clocking in to immunity. Nat. Rev. Immunol. 18, 423–437 (2018).
pubmed: 29662121 doi: 10.1038/s41577-018-0008-4
Stratmann, M. & Schibler, U. Properties, entrainment, and physiological functions of mammalian peripheral oscillators. J. Biol. Rhythms 21, 494–506 (2006).
pubmed: 17107939 doi: 10.1177/0748730406293889
Mohawk, J. A., Green, C. B. & Takahashi, J. S. Central and peripheral circadian clocks in mammals. Annu. Rev. Neurosci. 35, 445–462 (2012).
pubmed: 22483041 pmcid: 3710582 doi: 10.1146/annurev-neuro-060909-153128
Sato, T. K. et al. A functional genomics strategy reveals Rora as a component of the mammalian circadian clock. Neuron 43, 527–537 (2004).
pubmed: 15312651 doi: 10.1016/j.neuron.2004.07.018
Yu, X. et al. TH17 cell differentiation is regulated by the circadian clock. Science (New York, NY) 342, 727–730 (2013).
doi: 10.1126/science.1243884
Gibbs, J. E. et al. The nuclear receptor REV-ERBalpha mediates circadian regulation of innate immunity through selective regulation of inflammatory cytokines. Proc. . Natl. Acad. Sci. USA 109, 582–587 (2012).
pubmed: 22184247 doi: 10.1073/pnas.1106750109
Pariollaud M. et al. Circadian clock component REV-ERBalpha controls homeostatic regulation of pulmonary inflammation. J. Clin. Invest. 128, 2281–2296 (2018).
Nguyen, K. D. et al. Circadian gene Bmal1 regulates diurnal oscillations of Ly6C(hi) inflammatory monocytes. Science (New York, NY) 341, 1483–1488 (2013).
doi: 10.1126/science.1240636
Curtis, A. M. et al. Circadian control of innate immunity in macrophages by miR-155 targeting Bmal1. Proc. Natl. Acad. Sci. USA 112, 7231–7236 (2015).
pubmed: 25995365 pmcid: 4466714 doi: 10.1073/pnas.1501327112
Singh, P. B. et al. MicroRNA regulation of type 2 innate lymphoid cell homeostasis and function in allergic inflammation. J. Exp. Med. 214, 3627–3643 (2017).
pubmed: 29122948 pmcid: 5716040 doi: 10.1084/jem.20170545
Johansson, K., Malmhall, C., Ramos-Ramirez, P. & Radinger, M. MicroRNA-155 is a critical regulator of type 2 innate lymphoid cells and IL-33 signaling in experimental models of allergic airway inflammation. J. Allergy Clin. Immunol. 139, 1007–1016.e1009 (2017).
pubmed: 27492144 doi: 10.1016/j.jaci.2016.06.035
Harmar, A. J. et al. The VPAC(2) receptor is essential for circadian function in the mouse suprachiasmatic nuclei. Cell 109, 497–508 (2002).
pubmed: 12086606 doi: 10.1016/S0092-8674(02)00736-5
Nussbaum, J. C. et al. Type 2 innate lymphoid cells control eosinophil homeostasis. Nature 502, 245–248 (2013).
pubmed: 24037376 pmcid: 3795960 doi: 10.1038/nature12526
Carey, M. A. et al. It’s all about sex: gender, lung development and lung disease. Trends Endocrinol. Metab.: TEM 18, 308–313 (2007).
pubmed: 17764971 doi: 10.1016/j.tem.2007.08.003
Almqvist, C., Worm, M. & Leynaert, B. working group of GALENWPG. Impact of gender on asthma in childhood and adolescence: a GA2LEN review. Allergy 63, 47–57 (2008).
pubmed: 17822448
Cephus, J. Y. et al. Testosterone Attenuates Group 2 Innate Lymphoid Cell-Mediated AirwayInflammation. Cell Rep. 21, 2487–2499 (2017).
pubmed: 29186686 pmcid: 5731254 doi: 10.1016/j.celrep.2017.10.110
Oertelt-Prigione, S. The influence of sex and gender on the immune response. Autoimmun. Rev. 11, A479–A485 (2012).
pubmed: 22155201 doi: 10.1016/j.autrev.2011.11.022
Kawana, K., Kawana, Y. & Schust, D. J. Female steroid hormones use signal transducers and activators of transcription protein-mediated pathways to modulate the expression of T-bet in epithelial cells: a mechanism for local immune regulation in the human reproductive tract. Mol. Endocrinol. (Baltim., Md) 19, 2047–2059 (2005).
doi: 10.1210/me.2004-0489
Pan, T. et al. 17beta-Oestradiol enhances the expansion and activation of myeloid-derived suppressor cells via signal transducer and activator of transcription (STAT)-3 signalling in human pregnancy. Clin. Exp. Immunol. 185, 86–97 (2016).
pubmed: 26969967 pmcid: 4908292 doi: 10.1111/cei.12790
Douin-Echinard, V. et al. Estrogen receptor alpha, but not beta, is required for optimal dendritic cell differentiation and [corrected] CD40-induced cytokine production. J. Immunol. (Baltim., Md: 1950) 180, 3661–3669 (2008).
doi: 10.4049/jimmunol.180.6.3661
Laffont, S., Seillet, C. & Guery, J. C. Estrogen Receptor-Dependent Regulation of Dendritic Cell Development and Function. Front. Immunol. 8, 108 (2017).
pubmed: 28239379 pmcid: 5300975
Butts, C. L. et al. Progesterone inhibits mature rat dendritic cells in a receptor-mediated fashion. Int. Immunol. 19, 287–296 (2007).
pubmed: 17289656 doi: 10.1093/intimm/dxl145
Zhao, X. et al. Progesterone enhances immunoregulatory activity of human mesenchymal stem cells via PGE2 and IL-6. Am. J. Reprod. Immunol. (New York, NY: 1989) 68, 290–300 (2012).
doi: 10.1111/j.1600-0897.2012.01163.x
Enninga, E. A. et al. Immunomodulatory effects of sex hormones: requirements for pregnancy and relevance in melanoma. Mayo Clin. Proc. 89, 520–535 (2014).
pubmed: 24684874 doi: 10.1016/j.mayocp.2014.01.006
Hepworth, M. R., Hardman, M. J. & Grencis, R. K. The role of sex hormones in the development of Th2 immunity in a gender-biased model of Trichuris muris infection. Eur. J. Immunol. 40, 406–416 (2010).
pubmed: 19950176 doi: 10.1002/eji.200939589
Arruvito, L. et al. NK cells expressing a progesterone receptor are susceptible to progesterone-induced apoptosis. J. Immunol. (Baltim., Md: 1950) 180, 5746–5753 (2008).
doi: 10.4049/jimmunol.180.8.5746
Llewelyn, D. E., Read, G. F. & Hillier, S. G. Proceedings: Novel procedure for the simultaneous determination of testosterone and 5alpha-dihydrotestosterone concentrations in unpurified plasma extracts by radioimmunoassay. J. Endocrinol. 67, 7p–8p (1975).
pubmed: 1206320
Penning, T. M., Bauman, D. R., Jin, Y. & Rizner, T. L. Identification of the molecular switch that regulates access of 5alpha-DHT to the androgen receptor. Mol. Cell. Endocrinol. 265-266, 77–82 (2007).
pubmed: 17223255 pmcid: 1857325 doi: 10.1016/j.mce.2006.12.007
Laffont, S. et al. Androgen signaling negatively controls group 2 innate lymphoid cells. J. Exp. Med. 214, 1581–1592 (2017).
pubmed: 28484078 pmcid: 5461006 doi: 10.1084/jem.20161807
Kadel, S. et al. A Major Population of Functional KLRG1(-) ILC2s in Female Lungs Contributes to a Sex Bias in ILC2 Numbers. ImmunoHorizons 2, 74–86 (2018).
pubmed: 29568816 pmcid: 5860819 doi: 10.4049/immunohorizons.1800008
Russi, A. E., Ebel, M. E., Yang, Y. & Brown, M. A. Male-specific IL-33 expression regulates sex-dimorphic EAE susceptibility. Proc. Natl Acad. Sci. USA 115, E1520–e1529 (2018).
pubmed: 29378942 pmcid: 5816140 doi: 10.1073/pnas.1710401115
Russi, A. E., Walker-Caulfield, M. E., Ebel, M. E. & Brown, M. A. Cutting edge: c-Kit signaling differentially regulates type 2 innate lymphoid cell accumulation and susceptibility to central nervous system demyelination in male and female SJL mice. J. Immunol. (Baltim., Md: 1950) 194, 5609–5613 (2015).
doi: 10.4049/jimmunol.1500068
Bartemes, K., Chen, C. C., Iijima, K., Drake, L. & Kita, H. IL-33-Responsive Group 2 Innate Lymphoid Cells Are Regulated by Female Sex Hormones in the Uterus. J. Immunol. (Baltim., Md: 1950) 200, 229–236 (2018).
doi: 10.4049/jimmunol.1602085
Saluzzo, S. et al. First-Breath-Induced Type 2 Pathways Shape the Lung ImmuneEnvironment. . Cell Rep. 18, 1893–1905 (2017).
pubmed: 28228256 pmcid: 5329122 doi: 10.1016/j.celrep.2017.01.071
Steer, C. A. et al. Group 2 innate lymphoid cell activation in the neonatal lung drives type 2 immunity and allergen sensitization. J. Allergy Clin. Immunol. 140, 593–595.e593 (2017).
pubmed: 28216436 doi: 10.1016/j.jaci.2016.12.984
de Kleer, I. M. et al. Perinatal Activation of the Interleukin-33 Pathway Promotes Type 2 Immunity in the Developing Lung. Immunity 45, 1285–1298 (2016).
pubmed: 27939673 doi: 10.1016/j.immuni.2016.10.031
Saravia, J. et al. Respiratory Syncytial Virus Disease Is Mediated by Age-Variable IL-33. PLoS. Pathog. 11, e1005217 (2015).
pubmed: 26473724 pmcid: 4608776 doi: 10.1371/journal.ppat.1005217
PrabhuDas, M. et al. Challenges in infant immunity: implications for responses to infection and vaccines. Nat. Immunol. 12, 189–194 (2011).
pubmed: 21321588 doi: 10.1038/ni0311-189
Mohr, E. & Siegrist, C. A. Vaccination in early life: standing up to the challenges. Curr. Opin. Immunol. 41, 1–8 (2016).
pubmed: 27104290 doi: 10.1016/j.coi.2016.04.004
Kurowska-Stolarska, M. et al. IL-33 amplifies the polarization of alternatively activated macrophages that contribute to airway inflammation. J. Immunol. (Baltim., Md: 1950) 183, 6469–6477 (2009).
doi: 10.4049/jimmunol.0901575
Jones, C. V. et al. M2 macrophage polarisation is associated with alveolar formation during postnatal lung development. Respir. Res. 14, 41 (2013).
pubmed: 23560845 pmcid: 3626876 doi: 10.1186/1465-9921-14-41
Lechner, A. J. et al. Recruited Monocytes and Type 2 Immunity Promote Lung Regeneration following Pneumonectomy. Cell. Stem. Cell. 21, 120–134.e127 (2017).
pubmed: 28506464 pmcid: 5501755 doi: 10.1016/j.stem.2017.03.024
Sugita, K. et al. Type 2 innate lymphoid cells disrupt bronchial epithelial barrier integrity by targeting tight junctions through IL-13 in asthmatic patients. J. Allergy Clin. Immunol. 141, 300–310.e311 (2018).
pubmed: 28392332 doi: 10.1016/j.jaci.2017.02.038
Franco, R., Schoneveld, O. J., Pappa, A. & Panayiotidis, M. I. The central role of glutathione in the pathophysiology of human diseases. Arch. Physiol. Biochem. 113, 234–258 (2007).
pubmed: 18158646 doi: 10.1080/13813450701661198
Papa, I. et al. TFH-derived dopamine accelerates productive synapses in germinal centres. Nature 547, 318–323 (2017).
pubmed: 28700579 pmcid: 5540173 doi: 10.1038/nature23013
Gadani, S. P., Smirnov, I., Smith, A. T., Overall, C. C. & Kipnis, J. Characterization of meningeal type 2 innate lymphocytes and their response to CNS injury. J. Exp. Med. 214, 285–296 (2017).
pubmed: 27994070 doi: 10.1084/jem.20161982
Hedrick, J. A. et al. Identification of a human gastrointestinal tract and immune system receptor for the peptide neuromedin U. Mol. Pharmacol. 58, 870–875 (2000).
pubmed: 10999960 doi: 10.1124/mol.58.4.870
Moriyama, M. et al. The neuropeptide neuromedin U promotes inflammation by direct activation of mast cells. J. Exp. Med. 202, 217–224 (2005).
pubmed: 16009716 pmcid: 2213011 doi: 10.1084/jem.20050248
Moriyama, M. et al. The neuropeptide neuromedin U activates eosinophils and is involved in allergen-induced eosinophilia. Am. J. Physiol. Lung Cell. Mol. Physiol. 290, L971–L977 (2006).
pubmed: 16373672 doi: 10.1152/ajplung.00345.2005
Klose, C. S. N. et al. The neuropeptide neuromedin U stimulates innate lymphoid cells and type 2 inflammation. Nature 549, 282–286 (2017).
pubmed: 28869965 pmcid: 6066372 doi: 10.1038/nature23676
Wallrapp, A. et al. The neuropeptide NMU amplifies ILC2-driven allergic lung inflammation. Nature 549, 351–356 (2017).
pubmed: 28902842 pmcid: 5746044 doi: 10.1038/nature24029
Cardoso, V. et al. Neuronal regulation of type 2 innate lymphoid cells via neuromedin U. Nature 549, 277–281 (2017).
pubmed: 28869974 pmcid: 5714273 doi: 10.1038/nature23469
Modena, B. D. et al. Gene Expression Correlated with Severe Asthma Characteristics Reveals Heterogeneous Mechanisms of Severe Disease. Am. J. Respir. Crit. Care. Med. 195, 1449–1463 (2017).
pubmed: 27984699 pmcid: 5470748 doi: 10.1164/rccm.201607-1407OC
Beale, J. et al. Rhinovirus-induced IL-25 in asthma exacerbation drives type 2 immunity and allergic pulmonary inflammation. Sci. Transl. Med. 6, 256ra134 (2014).
pubmed: 25273095 pmcid: 4246061 doi: 10.1126/scitranslmed.3009124
Sui P. et al. Pulmonary neuroendocrine cells amplify allergic asthma responses. Science (New York, NY) 360 (2018).
Moriyama, S. et al. beta2-adrenergic receptor-mediated negative regulation of group 2 innate lymphoid cell responses. Science (New York, NY) 359, 1056–1061 (2018).
doi: 10.1126/science.aan4829
Hammad, H. & Lambrecht, B. N. Barrier Epithelial Cells and the Control of Type 2 Immunity. Immunity 43, 29–40 (2015).
pubmed: 26200011 doi: 10.1016/j.immuni.2015.07.007
Kubo, M. Innate and adaptive type 2 immunity in lung allergic inflammation. Immunol. Rev. 278, 162–172 (2017).
pubmed: 28658559 doi: 10.1111/imr.12557
Hansbro, P. M., Beagley, K. W., Horvat, J. C. & Gibson, P. G. Role of atypical bacterial infection of the lung in predisposition/protection of asthma. Pharmacol. Ther. 101, 193–210 (2004).
pubmed: 15030999 doi: 10.1016/j.pharmthera.2003.10.007
Hansbro, N. G., Horvat, J. C., Wark, P. A. & Hansbro, P. M. Understanding the mechanisms of viral induced asthma: new therapeutic directions. Pharmacol. Ther. 117, 313–353 (2008).
pubmed: 18234348 doi: 10.1016/j.pharmthera.2007.11.002 pmcid: 7112677
Hansbro, P. M. et al. Mechanisms and treatments for severe, steroid-resistant allergic airway disease and asthma. Immunol. Rev. 278, 41–62 (2017).
pubmed: 28658552 doi: 10.1111/imr.12543
Hansbro, P. M., Kaiko, G. E. & Foster, P. S. Cytokine/anti-cytokine therapy - novel treatments for asthma? Br. J. Pharmacol. 163, 81–95 (2011).
pubmed: 21232048 pmcid: 3085870 doi: 10.1111/j.1476-5381.2011.01219.x
Kim, R. Y. et al. MicroRNA-21 drives severe, steroid-insensitive experimental asthma by amplifying phosphoinositide 3-kinase-mediated suppression of histone deacetylase 2. J. Allergy Clin. Immunol. 139, 519–532 (2017).
pubmed: 27448447 doi: 10.1016/j.jaci.2016.04.038
Kim, R. Y. et al. Role for NLRP3 Inflammasome-mediated, IL-1beta-Dependent Responses in Severe, Steroid-Resistant Asthma. Am. J. Respir. Crit. Care. Med. 196, 283–297 (2017).
pubmed: 28252317 doi: 10.1164/rccm.201609-1830OC
Moffatt, M. F. et al. A large-scale, consortium-based genomewide association study of asthma. N. Engl. J. Med. 363, 1211–1221 (2010).
pubmed: 20860503 pmcid: 4260321 doi: 10.1056/NEJMoa0906312
Stadhouders R. et al. Epigenome analysis links gene regulatory elements in group 2 innate lymphocytes to asthma susceptibility. J. Allergy Clin. Immunol. 142, 1793–1807 (2018).
doi: 10.1016/j.jaci.2017.12.1006
Christianson, C. A. et al. Persistence of asthma requires multiple feedback circuits involving type 2 innate lymphoid cells and IL-33. J. Allergy Clin. Immunol. 136, 59–68.e14 (2015).
pubmed: 25617223 pmcid: 4494983 doi: 10.1016/j.jaci.2014.11.037
Smith, S. G. et al. Increased numbers of activated group 2 innate lymphoid cells in the airways of patients with severe asthma and persistent airway eosinophilia. J. Allergy Clin. Immunol. 137, 75–86.e78 (2016).
pubmed: 26194544 doi: 10.1016/j.jaci.2015.05.037
Hirose, K., Iwata, A., Tamachi, T. & Nakajima, H. Allergic airway inflammation: key players beyond the Th2 cell pathway. Immunol. Rev. 278, 145–161 (2017).
pubmed: 28658544 doi: 10.1111/imr.12540
Bartemes, K. R., Kephart, G. M., Fox, S. J. & Kita, H. Enhanced innate type 2 immune response in peripheral blood from patients with asthma. J. Allergy Clin. Immunol. 134, 671–678.e674 (2014).
pubmed: 25171868 pmcid: 4149890 doi: 10.1016/j.jaci.2014.06.024
Martinez-Gonzalez, I. et al. Allergen-Experienced Group 2 Innate Lymphoid Cells Acquire Memory-like Properties and Enhance Allergic Lung Inflammation. Immunity 45, 198–208 (2016).
pubmed: 27421705 doi: 10.1016/j.immuni.2016.06.017
Barnig, C. et al. Lipoxin A4 regulates natural killer cell and type 2 innate lymphoid cell activation in asthma. Sci. Transl. Med. 5, 174ra126 (2013).
doi: 10.1126/scitranslmed.3004812
Britanova, L. & Diefenbach, A. Interplay of innate lymphoid cells and the microbiota. Immunol. Rev. 279, 36–51 (2017).
pubmed: 28856740 doi: 10.1111/imr.12580
Monticelli, L. A. et al. Arginase 1 is an innate lymphoid-cell-intrinsic metabolic checkpoint controlling type 2 inflammation. Nat. Immunol. 17, 656–665 (2016).
pubmed: 27043409 pmcid: 4873382 doi: 10.1038/ni.3421
Essilfie, A. T. et al. Macrolide therapy suppresses key features of experimental steroid-sensitive and steroid-insensitive asthma. Thorax 70, 458–467 (2015).
pubmed: 25746630 doi: 10.1136/thoraxjnl-2014-206067
Gauvreau, G. M. et al. Effects of an anti-TSLP antibody on allergen-induced asthmatic responses. N. Engl. J. Med. 370, 2102–2110 (2014).
pubmed: 24846652 doi: 10.1056/NEJMoa1402895
Erpenbeck, V. J. et al. The oral CRTh2 antagonist QAW039 (fevipiprant): A phase II study in uncontrolled allergic asthma. Pulm. Pharmacol. Ther. 39, 54–63 (2016).
pubmed: 27354118 doi: 10.1016/j.pupt.2016.06.005
Kearley, J. et al. Cigarette smoke silences innate lymphoid cell function and facilitates an exacerbated type I interleukin-33-dependent response to infection. Immunity 42, 566–579 (2015).
pubmed: 25786179 doi: 10.1016/j.immuni.2015.02.011
Donovan C. et al. Roles for T/B lymphocytes and ILC2s in experimental chronic obstructive pulmonary disease. J. Leukoc. Biol. 105, 143–150 (2018).
pubmed: 30260499 doi: 10.1002/JLB.3AB0518-178R
Beckett, E. L. et al. A new short-term mouse model of chronic obstructive pulmonary disease identifies a role for mast cell tryptase in pathogenesis. J. Allergy Clin. Immunol. 131, 752–762 (2013).
pubmed: 23380220 pmcid: 4060894 doi: 10.1016/j.jaci.2012.11.053
Hsu, A. C. et al. Targeting PI3K-p110alpha Suppresses Influenza Virus Infection in Chronic Obstructive Pulmonary Disease. Am. J. Respir. Crit. Care. Med. 191, 1012–1023 (2015).
pubmed: 25751541 doi: 10.1164/rccm.201501-0188OC
Hsu, A. C. et al. MicroRNA-125a and -b inhibit A20 and MAVS to promote inflammation and impair antiviral response in COPD. JCI Insight 2, e90443 (2017).
pubmed: 28405612 pmcid: 5374076 doi: 10.1172/jci.insight.90443
Li, D. et al. IL-33 promotes ST2-dependent lung fibrosis by the induction of alternatively activated macrophages and innate lymphoid cells in mice. J. Allergy Clin. Immunol. 134, 1422–1432.e1411 (2014).
pubmed: 24985397 pmcid: 4258609 doi: 10.1016/j.jaci.2014.05.011
Hams, E. et al. IL-25 and type 2 innate lymphoid cells induce pulmonary fibrosis. Proc. Natl. Acad. Sci. USA 111, 367–372 (2014).
pubmed: 24344271 doi: 10.1073/pnas.1315854111
Vannella, K. M. et al. Combinatorial targeting of TSLP, IL-25, and IL-33 in type 2 cytokine-driven inflammation and fibrosis. Sci. Transl. Med. 8, 337ra365 (2016).
doi: 10.1126/scitranslmed.aaf1938
Moretti, S. et al. A mast cell-ILC2-Th9 pathway promotes lung inflammation in cystic fibrosis. Nat. Commun. 8, 14017 (2017).
pubmed: 28090087 pmcid: 5241810 doi: 10.1038/ncomms14017
Nausch N., Mutapi F. Group 2 ILCs: A way of enhancing immune protection against human helminths? Parasite Immunol. 40, (2018).
pmcid: 5811928 doi: 10.1111/pim.12450
Hong, J. Y. et al. Neonatal rhinovirus induces mucous metaplasia and airways hyperresponsiveness through IL-25 and type 2 innate lymphoid cells. J. Allergy Clin. Immunol. 134, 429–439 (2014).
pubmed: 24910174 pmcid: 4119851 doi: 10.1016/j.jaci.2014.04.020
Han, M. et al. IFN-gamma Blocks Development of an Asthma Phenotype in Rhinovirus-Infected Baby Mice by Inhibiting Type 2 Innate Lymphoid Cells. Am. J. Respir. Cell Mol. Biol. 56, 242–251 (2017).
pubmed: 27679954 pmcid: 5359646
Rajput, C. et al. RORalpha-dependent type 2 innate lymphoid cells are required and sufficient for mucous metaplasia in immature mice. Am. J. Physiol. Lung Cell. Mol. Physiol. 312, L983–l993 (2017).
pubmed: 28360114 pmcid: 5495952 doi: 10.1152/ajplung.00368.2016
Han, M. et al. The Innate Cytokines IL-25, IL-33, and TSLP Cooperate in the Induction of Type 2 Innate Lymphoid Cell Expansion and Mucous Metaplasia in Rhinovirus-Infected Immature Mice. J. Immunol. (Baltim., Md: 1950) 199, 1308–1318 (2017).
doi: 10.4049/jimmunol.1700216
Jackson, D. J. et al. IL-33-dependent type 2 inflammation during rhinovirus-induced asthma exacerbations in vivo. Am. J. Respir. Crit. Care. Med. 190, 1373–1382 (2014).
pubmed: 25350863 pmcid: 4299647 doi: 10.1164/rccm.201406-1039OC
Stier, M. T. et al. Respiratory syncytial virus infection activates IL-13-producing group 2 innate lymphoid cells through thymic stromal lymphopoietin. J. Allergy Clin. Immunol. 138, 814–824.e811 (2016).
pubmed: 27156176 pmcid: 5014571 doi: 10.1016/j.jaci.2016.01.050
Califano, D. et al. IFN-gamma increases susceptibility to influenza A infection through suppression of group II innate lymphoid cells. Mucosal Immunol. 11, 209–219 (2018).
pubmed: 28513592 doi: 10.1038/mi.2017.41
Chang, Y. J. et al. Innate lymphoid cells mediate influenza-induced airway hyper-reactivity independently of adaptive immunity. Nat. Immunol. 12, 631–638 (2011).
pubmed: 21623379 pmcid: 3417123 doi: 10.1038/ni.2045
Gorski, S. A., Hahn, Y. S. & Braciale, T. J. Group 2 innate lymphoid cell production of IL-5 is regulated by NKT cells during influenza virus infection. PLoS. Pathog. 9, e1003615 (2013).
pubmed: 24068930 pmcid: 3777868 doi: 10.1371/journal.ppat.1003615
Oliphant, C. J. et al. MHCII-mediated dialog between group 2 innate lymphoid cells and CD4(+) T cells potentiates type 2 immunity and promotes parasitic helminth expulsion. Immunity 41, 283–295 (2014).
pubmed: 25088770 pmcid: 4148706 doi: 10.1016/j.immuni.2014.06.016
Molofsky, A. B. et al. Innate lymphoid type 2 cells sustain visceral adipose tissue eosinophils and alternatively activated macrophages. J. Exp. Med. 210, 535–549 (2013).
pubmed: 23420878 pmcid: 3600903 doi: 10.1084/jem.20121964
Walker, J. A. et al. Bcl11b is essential for group 2 innate lymphoid cell development. J. Exp. Med. 212, 875–882 (2015).
pubmed: 25964370 pmcid: 4451131 doi: 10.1084/jem.20142224
Li, B. W. et al. T cells are necessary for ILC2 activation in house dust mite-induced allergic airway inflammation in mice. Eur. J. Immunol. 46, 1392–1403 (2016).
pubmed: 27062360 doi: 10.1002/eji.201546119
Li, B. W. S., Beerens, D., Brem, M. D. & Hendriks, R. W. Characterization of Group 2 Innate Lymphoid Cells in Allergic Airway Inflammation Models in the Mouse. Methods Mol. Biol. (Clifton, NJ) 1559, 169–183 (2017).
doi: 10.1007/978-1-4939-6786-5_12
Hung, L. Y. et al. IL-33 drives biphasic IL-13 production for noncanonical Type 2 immunity against hookworms. Proc. Natl. Acad. Sci. USA 110, 282–287 (2013).
pubmed: 23248269 doi: 10.1073/pnas.1206587110
Doherty, T. A. et al. Lung type 2 innate lymphoid cells express cysteinyl leukotriene receptor 1, which regulates TH2 cytokine production. J. Allergy Clin. Immunol. 132, 205–213 (2013).
pubmed: 23688412 pmcid: 3704056 doi: 10.1016/j.jaci.2013.03.048
Beale, J. et al. Rhinovirus-induced IL-25 in asthma exacerbation drives type 2 immunity and allergic pulmonary inflammation. Sci. Transl. Med 6, 256ra134 (2014).
pubmed: 25273095 pmcid: 4246061 doi: 10.1126/scitranslmed.3009124
Shin, H. W. et al. IL-25 as a novel therapeutic target in nasal polyps of patients with chronic rhinosinusitis. J. Allergy Clin. Immunol. 135, 1476–1485.e1477 (2015).
pubmed: 25725991 doi: 10.1016/j.jaci.2015.01.003
Ballantyne, S. J. et al. Blocking IL-25 prevents airway hyperresponsiveness in allergic asthma. J. Allergy Clin. Immunol. 120, 1324–1331 (2007).
pubmed: 17889290 doi: 10.1016/j.jaci.2007.07.051
Scott, I. C., Houslay, K. F. & Cohen, E. S. Prospects to translate the biology of IL-33 and ST2 during organ transplantation into therapeutics to treat graft-versus-host disease. Ann. Transl. Med. 4, 500 (2016).
Corren, J. et al. Tezepelumab in Adults with Uncontrolled Asthma. N. Engl. J. Med. 377, 936–946 (2017).
pubmed: 28877011 doi: 10.1056/NEJMoa1704064
Antoniu, S. A. MEDI-528, an anti-IL-9 humanized antibody for the treatment of asthma. Curr. Opin. Mol. Ther. 12, 233–239 (2010).
pubmed: 20373267
Hall, I. P. et al. Efficacy of BI 671800, an oral CRTH2 antagonist, in poorly controlled asthma as sole controller and in the presence of inhaled corticosteroid treatment. Pulm. Pharmacol. Ther. 32, 37–44 (2015).
pubmed: 25861737 doi: 10.1016/j.pupt.2015.03.003
Barnes, N. et al. A randomized, double-blind, placebo-controlled study of the CRTH2 antagonist OC000459 in moderate persistent asthma. Clin. Exp. Allergy.: J. Br. Soc. Allergy. Clin. Immunol. 42, 38–48 (2012).
doi: 10.1111/j.1365-2222.2011.03813.x
Kuna, P., Bjermer, L. & Tornling, G. Two Phase II randomized trials on the CRTh2 antagonist AZD1981 in adults with asthma. Drug Des. Dev. Ther. 10, 2759–2770 (2016).
doi: 10.2147/DDDT.S105142
Gonem, S. et al. Fevipiprant, a prostaglandin D2 receptor 2 antagonist, in patients with persistent eosinophilic asthma: a single-centre, randomised, double-blind, parallel-group, placebo-controlled trial. Lancet Respir. Med 4, 699–707 (2016).
pubmed: 27503237 doi: 10.1016/S2213-2600(16)30179-5
Huang, T. et al. Depletion of major pathogenic cells in asthma by targeting CRTh2. JCI Insight 1, e86689 (2016).
pubmed: 27699264 pmcid: 5033936 doi: 10.1172/jci.insight.86689
Xue, L. et al. Prostaglandin D2 activates group 2 innate lymphoid cells through chemoattractant receptor-homologous molecule expressed on TH2 cells. J. Allergy Clin. Immunol. 133, 1184–1194 (2014).
pubmed: 24388011 pmcid: 3979107 doi: 10.1016/j.jaci.2013.10.056
Bratt, J. M., Zeki, A. A., Last, J. A. & Kenyon, N. J. Competitive metabolism of L-arginine: arginase as a therapeutic target in asthma. J. Biomed. Res. 25, 299–308 (2011).
pubmed: 23554705 pmcid: 3596726 doi: 10.1016/S1674-8301(11)60041-9
Maarsingh, H. et al. Arginase inhibition protects against allergen-induced airway obstruction, hyperresponsiveness, and inflammation. Am. J. Respir. Crit. Care. Med. 178, 565–573 (2008).
pubmed: 18583571 doi: 10.1164/rccm.200710-1588OC
Meurs, H. et al. Increased arginase activity underlies allergen-induced deficiency of cNOS-derived nitric oxide and airway hyperresponsiveness. Br. J. Pharmacol. 136, 391–398 (2002).
pubmed: 12023942 pmcid: 1573363 doi: 10.1038/sj.bjp.0704725
van den Berg, M. P., Meurs, H. & Gosens, R. Targeting arginase and nitric oxide metabolism in chronic airway diseases and their co-morbidities. Curr. Opin. Pharmacol. 40, 126–133 (2018).
pubmed: 29729549 doi: 10.1016/j.coph.2018.04.010
Sel, S. et al. Effective prevention and therapy of experimental allergic asthma using a GATA-3-specific DNAzyme. J. Allergy Clin. Immunol. 121, 910–916.e915 (2008).
pubmed: 18325571 doi: 10.1016/j.jaci.2007.12.1175
Garn, H. & Renz, H. GATA-3-specific DNAzyme - A novel approach for stratified asthma therapy. Eur. J. Immunol. 47, 22–30 (2017).
pubmed: 27910098 doi: 10.1002/eji.201646450
Krug, N. et al. Allergen-induced asthmatic responses modified by a GATA3-specific DNAzyme. N. Engl. J. Med. 372, 1987–1995 (2015).
pubmed: 25981191 doi: 10.1056/NEJMoa1411776
Wenzel, S. et al. Dupilumab efficacy and safety in adults with uncontrolled persistent asthma despite use of medium-to-high-dose inhaled corticosteroids plus a long-acting beta2 agonist: a randomised double-blind placebo-controlled pivotal phase 2b dose-ranging trial. Lancet (Lond., Engl.) 388, 31–44 (2016).
doi: 10.1016/S0140-6736(16)30307-5
Simpson, E. L. et al. Two Phase 3 Trials of Dupilumab versus Placebo in Atopic Dermatitis. N. Engl. J. Med. 375, 2335–2348 (2016).
pubmed: 27690741 doi: 10.1056/NEJMoa1610020
Ortega, H. G. et al. Mepolizumab treatment in patients with severe eosinophilic asthma. N. Engl. J. Med. 371, 1198–1207 (2014).
pubmed: 25199059 doi: 10.1056/NEJMoa1403290
Pavord, I. D. et al. Mepolizumab for severe eosinophilic asthma (DREAM): a multicentre, double-blind, placebo-controlled trial. Lancet (Lond., Engl.) 380, 651–659 (2012).
doi: 10.1016/S0140-6736(12)60988-X
Busse, W. W., Ring, J., Huss-Marp, J. & Kahn, J. E. A review of treatment with mepolizumab, an anti-IL-5 mAb, in hypereosinophilic syndromes and asthma. J. Allergy Clin. Immunol. 125, 803–813 (2010).
pubmed: 20371394 doi: 10.1016/j.jaci.2009.11.048
Rothenberg, M. E. et al. Treatment of patients with the hypereosinophilic syndrome with mepolizumab. N. Engl. J. Med. 358, 1215–1228 (2008).
pubmed: 18344568 doi: 10.1056/NEJMoa070812
Brightling, C. E. et al. Efficacy and safety of tralokinumab in patients with severe uncontrolled asthma: a randomised, double-blind, placebo-controlled, phase 2b trial. Lancet Respir. Med. 3, 692–701 (2015).
pubmed: 26231288 doi: 10.1016/S2213-2600(15)00197-6
Hanania, N. A. et al. Efficacy and safety of lebrikizumab in patients with uncontrolled asthma (LAVOLTA I and LAVOLTA II): replicate, phase 3, randomised, double-blind, placebo-controlled trials. Lancet Respir. Med. 4, 781–796 (2016).
pubmed: 27616196 doi: 10.1016/S2213-2600(16)30265-X

Auteurs

Malcolm R Starkey (MR)

Priority Research Centre's GrowUpWell and Healthy Lungs, School of Biomedical Sciences and Pharmacy, The University of Newcastle and Hunter Medical Research Institute, New Lambton Heights, NSW, 2305, Australia.

Andrew Nj McKenzie (AN)

MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge, CB2 0QH, United Kingdom.

Gabrielle T Belz (GT)

Division of Molecular Immunology, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia; and Department of Medical Biology, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, VIC, 3010, Australia.

Philip M Hansbro (PM)

Priority Research Centre's GrowUpWell and Healthy Lungs, School of Biomedical Sciences and Pharmacy, The University of Newcastle and Hunter Medical Research Institute, New Lambton Heights, NSW, 2305, Australia. Philip.Hansbro@newcastle.edu.au.
Centre for Inflammation, Faculty of Science, Centenary Institute, University of Technology Sydney, Ultimo, NSW, 2007, Australia. Philip.Hansbro@newcastle.edu.au.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH