Pulmonary group 2 innate lymphoid cells: surprises and challenges.
Journal
Mucosal immunology
ISSN: 1935-3456
Titre abrégé: Mucosal Immunol
Pays: United States
ID NLM: 101299742
Informations de publication
Date de publication:
03 2019
03 2019
Historique:
received:
30
10
2018
accepted:
21
12
2018
revised:
18
12
2018
pubmed:
22
1
2019
medline:
25
6
2019
entrez:
22
1
2019
Statut:
ppublish
Résumé
Group 2 innate lymphoid cells (ILC2s) are a recently described subset of innate lymphocytes with important immune and homeostatic functions at multiple tissue sites, especially the lung. These cells expand locally after birth and during postnatal lung maturation and are present in the lung and other peripheral organs. They are modified by a variety of processes and mediate inflammatory responses to respiratory pathogens, inhaled allergens and noxious particles. Here, we review the emerging roles of ILC2s in pulmonary homeostasis and discuss recent and surprising advances in our understanding of how hormones, age, neurotransmitters, environmental challenges, and infection influence ILC2s. We also review how these responses may underpin the development, progression and severity of pulmonary inflammation and chronic lung diseases and highlight some of the remaining challenges for ILC2 biology.
Identifiants
pubmed: 30664706
doi: 10.1038/s41385-018-0130-4
pii: S1933-0219(22)00379-8
pmc: PMC6436699
mid: EMS82232
doi:
Substances chimiques
Cytokines
0
Hormones
0
Neurotransmitter Agents
0
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Review
Langues
eng
Sous-ensembles de citation
IM
Pagination
299-311Subventions
Organisme : Medical Research Council
ID : MC_U105178805
Pays : United Kingdom
Références
Neill, D. R. et al. Nuocytes represent a new innate effector leukocyte that mediates type-2 immunity. Nature 464, 1367–1370 (2010).
pubmed: 20200518
pmcid: 2862165
doi: 10.1038/nature08900
Halim, T. Y. et al. Group 2 innate lymphoid cells are critical for the initiation of adaptive T helper 2 cell-mediated allergic lung inflammation. Immunity 40, 425–435 (2014).
pubmed: 24613091
pmcid: 4210641
doi: 10.1016/j.immuni.2014.01.011
Spits, H. et al. Innate lymphoid cells--a proposal for uniform nomenclature. Nat. Rev. Immunol. 13, 145–149 (2013).
pubmed: 23348417
doi: 10.1038/nri3365
Bar-Ephraim, Y. E. & Mebius, R. E. Innate lymphoid cells in secondary lymphoid organs. Immunol. Rev. 271, 185–199 (2016).
pubmed: 27088915
doi: 10.1111/imr.12407
Monticelli, L. A. et al. Innate lymphoid cells promote lung-tissue homeostasis after infection with influenza virus. Nat. Immunol. 12, 1045–1054 (2011).
pubmed: 21946417
pmcid: 3320042
doi: 10.1038/ni.2131
Sonnenberg, G. F., Fouser, L. A. & Artis, D. Border patrol: regulation of immunity, inflammation and tissue homeostasis at barrier surfaces by IL-22. Nat. Immunol. 12, 383–390 (2011).
doi: 10.1038/ni.2025
pubmed: 21502992
Li, Z. et al. Epidermal Notch1 recruits RORgamma(+) group 3 innate lymphoid cells to orchestrate normal skin repair. Nat. Commun. 7, 11394 (2016).
pubmed: 27099134
pmcid: 4844683
doi: 10.1038/ncomms11394
Lee, M. W. et al. Activated type 2 innate lymphoid cells regulate beige fat biogenesis. Cell 160, 74–87 (2015).
pubmed: 25543153
doi: 10.1016/j.cell.2014.12.011
Sanos, S. L., Vonarbourg, C., Mortha, A. & Diefenbach, A. Control of epithelial cell function by interleukin-22-producing RORgammat+innate lymphoid cells. Immunology 132, 453–465 (2011).
pubmed: 21391996
pmcid: 3075499
doi: 10.1111/j.1365-2567.2011.03410.x
Sawa, S. et al. RORgammat+innate lymphoid cells regulate intestinal homeostasis by integrating negative signals from the symbiotic microbiota. Nat. Immunol. 12, 320–326 (2011).
pubmed: 21336274
doi: 10.1038/ni.2002
Sonnenberg, G. F. et al. Innate lymphoid cells promote anatomical containment of lymphoid-resident commensal bacteria. Science 336, 1321–1325 (2012).
pubmed: 22674331
pmcid: 3659421
doi: 10.1126/science.1222551
Gladiator, A., Wangler, N., Trautwein-Weidner, K. & LeibundGut-Landmann, S. Cutting edge: IL-17-secreting innate lymphoid cells are essential for host defense against fungal infection. J. Immunol. 190, 521–525 (2013).
pubmed: 23255360
doi: 10.4049/jimmunol.1202924
Bal, S. M. et al. IL-1beta, IL-4 and IL-12 control the fate of group 2 innate lymphoid cells in human airway inflammation in the lungs. Nat. Immunol. 17, 636–645 (2016).
doi: 10.1038/ni.3444
pubmed: 27111145
Silver, J. S. et al. Inflammatory triggers associated with exacerbations of COPD orchestrate plasticity of group 2 innate lymphoid cells in the lungs. Nat. Immunol. 17, 626–635 (2016).
pubmed: 27111143
pmcid: 5345745
doi: 10.1038/ni.3443
Walker, J. A. & McKenzie, A. N. J. TH2 cell development and function. Nat. Rev. Immunol. 18, 121–133 (2018).
pubmed: 29082915
doi: 10.1038/nri.2017.118
Mattner, J. & Wirtz, S. Friend or Foe? The ambiguous role of innate lymphoid cells in cancer development. Trends Immunol. 38, 29–38 (2017).
pubmed: 27810463
doi: 10.1016/j.it.2016.10.004
Huang, Y. et al. IL-25-responsive, lineage-negative KLRG1(hi) cells are multipotential ‘inflammatory’ type 2 innate lymphoid cells. Nat. Immunol. 16, 161–169 (2015).
pubmed: 25531830
doi: 10.1038/ni.3078
Huang, Y. et al. S1P-dependent interorgan trafficking of group 2 innate lymphoid cells supports host defense. Science (New York, NY) 359, 114–119 (2018).
doi: 10.1126/science.aam5809
Huang, Y. & Paul, W. E. Inflammatory group 2 innate lymphoid cells. Int. Immunol. 28, 23–28 (2016).
pubmed: 26232596
Hoyler, T. et al. The transcription factor GATA-3 controls cell fate and maintenance of type 2 innate lymphoid cells. Immunity 37, 634–648 (2012).
pubmed: 23063333
pmcid: 3662874
doi: 10.1016/j.immuni.2012.06.020
Mjosberg, J. et al. The transcription factor GATA3 is essential for the function of human type 2 innate lymphoid cells. Immunity 37, 649–659 (2012).
pubmed: 23063330
doi: 10.1016/j.immuni.2012.08.015
Li, B. W. S. et al. Group 2 innate lymphoid cells exhibit a dynamic phenotype in allergic airway inflammation. Front. Immunol. 8, 1684 (2017).
pubmed: 29250067
pmcid: 5716969
doi: 10.3389/fimmu.2017.01684
Klein Wolterink, R. G. et al. Essential, dose-dependent role for the transcription factor Gata3 in the development of IL-5+and IL-13+type 2 innate lymphoid cells. Proc. Natl Acad. Sci. USA 110, 10240–10245 (2013).
pubmed: 23733962
doi: 10.1073/pnas.1217158110
pmcid: 3690884
Wong, S. H. et al. Transcription factor ROR alpha is critical for nuocyte development. Nat. Immunol. 13, 229–236 (2012).
pubmed: 22267218
pmcid: 3343633
doi: 10.1038/ni.2208
Gentek, R. et al. Modulation of signal strength switches notch from an inducer of T cells to an inducer of ILC2. Front. Immunol. 4, 334 (2013).
pubmed: 24155745
pmcid: 3804867
doi: 10.3389/fimmu.2013.00334
Seillet, C. et al. Nfil3 is required for the development of all innate lymphoid cell subsets. J. Exp. Med. 211, 1733–1740 (2014).
pubmed: 25092873
pmcid: 4144736
doi: 10.1084/jem.20140145
Geiger, T. L. et al. Nfil3 is crucial for development of innate lymphoid cells and host protection against intestinal pathogens. J. Exp. Med. 211, 1723–1731 (2014).
pubmed: 25113970
pmcid: 4144732
doi: 10.1084/jem.20140212
Mielke, L. A. et al. TCF-1 controls ILC2 and NKp46+RORgammat+innate lymphocyte differentiation and protection in intestinal inflammation. J. Immunol. 191, 4383–4391 (2013).
pubmed: 24038093
doi: 10.4049/jimmunol.1301228
Yang, Q. et al. T cell factor 1 is required for group 2 innate lymphoid cell generation. Immunity 38, 694–704 (2013).
pubmed: 23601684
pmcid: 4029843
doi: 10.1016/j.immuni.2012.12.003
Spooner, C. J. et al. Specification of type 2 innate lymphocytes by the transcriptional determinant Gfi1. Nat. Immunol. 14, 1229–1236 (2013).
pubmed: 24141388
doi: 10.1038/ni.2743
Wang, H. C. et al. Downregulation of E protein activity augments an ILC2 differentiation program in the thymus. J. Immunol. (Baltim., Md: 1950) 198, 3149–3156 (2017).
doi: 10.4049/jimmunol.1602009
Walker, J. A. & McKenzie, A. N. Development and function of group 2 innate lymphoid cells. Curr. Opin. Immunol. 25, 148–155 (2013).
pubmed: 23562755
pmcid: 3776222
doi: 10.1016/j.coi.2013.02.010
Stier, M. T. et al. IL-33 promotes the egress of group 2 innate lymphoid cells from the bone marrow. J. Exp. Med. 215, 263–281 (2018).
pubmed: 29222107
pmcid: 5748848
doi: 10.1084/jem.20170449
Miyazaki, M. et al. The E-Id protein axis specifies adaptive lymphoid cell identity and suppresses thymic innate lymphoid cell development. Immunity 46, 818–834.e814 (2017).
pubmed: 28514688
pmcid: 5512722
doi: 10.1016/j.immuni.2017.04.022
Seillet, C. et al. Deciphering the innate lymphoid cell transcriptional program. Cell Rep. 17, 436–447 (2016).
pubmed: 27705792
doi: 10.1016/j.celrep.2016.09.025
Yu, Y. et al. Single-cell RNA-seq identifies a PD-1(hi) ILC progenitor and defines its development pathway. Nature 539, 102–106 (2016).
pubmed: 27749818
doi: 10.1038/nature20105
Taylor, S. et al. PD-1 regulates KLRG1(+) group 2 innate lymphoid cells. J. Exp. Med. 214, 1663–1678 (2017).
pubmed: 28490441
pmcid: 5461001
doi: 10.1084/jem.20161653
Schwartz, C. et al. ILC2s regulate adaptive Th2 cell functions via PD-L1 checkpoint control. J. Exp. Med. 214, 2507–2521 (2017).
pubmed: 28747424
pmcid: 5584124
doi: 10.1084/jem.20170051
Starkey, M. R. et al. Programmed death ligand 1 promotes early-life chlamydia respiratory infection-induced severe allergic airway disease. Am. J. Respir. Cell Mol. Biol. 54, 493–503 (2016).
pubmed: 26378990
doi: 10.1165/rcmb.2015-0204OC
Starkey, M. R. et al. Constitutive production of IL-13 promotes early-life Chlamydia respiratory infection and allergic airway disease. Mucosal Immunol. 6, 569–579 (2013).
pubmed: 23131786
doi: 10.1038/mi.2012.99
Gollwitzer, E. S. et al. Lung microbiota promotes tolerance to allergens in neonates via PD-L1. Nat. Med. 20, 642–647 (2014).
pubmed: 24813249
doi: 10.1038/nm.3568
Gury-BenAri, M. et al. The spectrum and regulatory landscape of intestinal innate lymphoid cells are shaped by the microbiome. Cell 166, 1231–1246.e1213 (2016).
pubmed: 27545347
doi: 10.1016/j.cell.2016.07.043
Lim, A. I. et al. Systemic human ILC precursors provide a substrate for tissue ILC differentiation. Cell 168, 1086–1100.e1010 (2017).
pubmed: 28283063
doi: 10.1016/j.cell.2017.02.021
Robinette, M. L. et al. Transcriptional programs define molecular characteristics of innate lymphoid cell classes and subsets. Nat. Immunol. 16, 306–317 (2015).
pubmed: 25621825
pmcid: 4372143
doi: 10.1038/ni.3094
Chea, S. et al. Single-cell gene expression analyses reveal heterogeneous responsiveness of fetal innate lymphoid progenitors to notch signaling. Cell Rep. 14, 1500–1516 (2016).
pubmed: 26832410
doi: 10.1016/j.celrep.2016.01.015
Shih, H. Y. et al. Developmental acquisition of regulomes underlies innate lymphoid cell functionality. Cell 165, 1120–1133 (2016).
pubmed: 27156451
pmcid: 4874839
doi: 10.1016/j.cell.2016.04.029
Koues, O. I. et al. Distinct gene regulatory pathways for human innate versus adaptive lymphoid cells. Cell 165, 1134–1146 (2016).
pubmed: 27156452
pmcid: 4874868
doi: 10.1016/j.cell.2016.04.014
Bjorklund, A. K. et al. The heterogeneity of human CD127(+) innate lymphoid cells revealed by single-cell RNA sequencing. Nat. Immunol. 17, 451–460 (2016).
pubmed: 26878113
doi: 10.1038/ni.3368
Vivier, E. et al. Innate lymphoid cells: 10 years on. Cell 174, 1054–1066 (2018).
pubmed: 30142344
doi: 10.1016/j.cell.2018.07.017
Krabbendam, L., Bal, S. M., Spits, H. & Golebski, K. New insights into the function, development, and plasticity of type 2 innate lymphoid cells. Immunol. Rev. 286, 74–85 (2018).
pubmed: 30294969
doi: 10.1111/imr.12708
Bernink, J. H. et al. Interleukin-12 and -23 control plasticity of CD127(+) Group 1 and Group 3 innate lymphoid cells in the intestinal lamina propria. Immunity 43, 146–160 (2015).
pubmed: 26187413
doi: 10.1016/j.immuni.2015.06.019
Cella, M., Otero, K. & Colonna, M. Expansion of human NK-22 cells with IL-7, IL-2, and IL-1beta reveals intrinsic functional plasticity. Proc. Natl Acad. Sci. USA 107, 10961–10966 (2010).
pubmed: 20534450
doi: 10.1073/pnas.1005641107
pmcid: 2890739
Okuda, Y. et al. [A Retrospective Investigation of Lacrimation in Patients Treated with S-1]. Gan. To. Kagaku. Ryoho. 45, 265–268 (2018).
pubmed: 29483417
Vonarbourg, C. et al. Regulated expression of nuclear receptor RORgammat confers distinct functional fates to NK cell receptor-expressing RORgammat(+) innate lymphocytes. Immunity 33, 736–751 (2010).
pubmed: 21093318
pmcid: 3042726
doi: 10.1016/j.immuni.2010.10.017
Klose, C. S. et al. Differentiation of type 1 ILCs from a common progenitor to all helper-like innate lymphoid cell lineages. Cell 157, 340–356 (2014).
pubmed: 24725403
doi: 10.1016/j.cell.2014.03.030
Rankin, L. C. et al. The transcription factor T-bet is essential for the development of NKp46(+) innate lymphocytes via the Notch pathway. Nat. Immunol. 14, 389–395 (2013).
pubmed: 23455676
pmcid: 4076532
doi: 10.1038/ni.2545
Sciume, G. et al. Distinct requirements for T-bet in gut innate lymphoid cells. J. Exp. Med. 209, 2331–2338 (2012).
pubmed: 23209316
pmcid: 3526352
doi: 10.1084/jem.20122097
Viant, C. et al. Transforming growth factor-beta and Notch ligands act as opposing environmental cues in regulating the plasticity of type 3 ILCs. Sci. Signal. 9, ra46 (2016).
pubmed: 27141930
doi: 10.1126/scisignal.aaf2176
Lee, J. S. et al. AHR drives the development of gut ILC22 cells and postnatal lymphoid tissues via pathways dependent on and independent of Notch. Nat. Immunol. 13, 144–151 (2011).
pubmed: 22101730
pmcid: 3468413
doi: 10.1038/ni.2187
Zhang, K. et al. Notch signaling promotes the plasticity of Group-2 innate lymphoid cells. J. Immunol. 198, 1798–1803 (2018).
doi: 10.4049/jimmunol.1601421
Ohne, Y. et al. IL-1 is a critical regulator of group 2 innate lymphoid cell function and plasticity. Nat. Immunol. 17, 646–655 (2016).
pubmed: 27111142
doi: 10.1038/ni.3447
Lim, A. I. et al. IL-12 drives functional plasticity of human group 2 innate lymphoid cells. J. Exp. Med. 213, 569–583 (2016).
pubmed: 26976630
pmcid: 4821648
doi: 10.1084/jem.20151750
Ricardo-Gonzalez, R. R. et al. Tissue signals imprint ILC2 identity with anticipatory function. Nat. Immunol. 19, 1093–1099 (2018).
pubmed: 30201992
pmcid: 6202223
doi: 10.1038/s41590-018-0201-4
Freud, A. G. & Caligiuri, M. A. Human natural killer cell development. Immunol. Rev. 214, 56–72 (2006).
pubmed: 17100876
doi: 10.1111/j.1600-065X.2006.00451.x
Simoni, Y. et al. Human innate lymphoid cell subsets possess tissue-type based heterogeneity in phenotype and frequency. Immunity 46, 148–161 (2017).
pubmed: 27986455
doi: 10.1016/j.immuni.2016.11.005
Scoville, S. D. et al. A progenitor cell expressing transcription factor rorgammat generates all human innate lymphoid cell subsets. Immunity 44, 1140–1150 (2016).
pubmed: 27178467
pmcid: 4893782
doi: 10.1016/j.immuni.2016.04.007
Serafini, N. et al. Gata3 drives development of RORgammat+group 3 innate lymphoid cells. J. Exp. Med. 211, 199–208 (2014).
pubmed: 24419270
pmcid: 3920560
doi: 10.1084/jem.20131038
Yagi, R. et al. The transcription factor GATA3 is critical for the development of all IL-7Ralpha-expressing innate lymphoid cells. Immunity 40, 378–388 (2014).
pubmed: 24631153
pmcid: 4026797
doi: 10.1016/j.immuni.2014.01.012
Rauber, S. et al. Resolution of inflammation by interleukin-9-producing type 2 innate lymphoid cells. Nat. Med. 23, 938–944 (2017).
pubmed: 28714991
pmcid: 5575995
doi: 10.1038/nm.4373
Lai, D. et al. Group 2 innate lymphoid cells protect lung endothelial cells from pyroptosis in sepsis. Cell death & Dis. 9, 369 (2018).
doi: 10.1038/s41419-018-0412-5
Omata, Y. et al. Group 2 innate lymphoid cells attenuate inflammatory arthritis and protect from bone destruction in mice. Cell Rep. 24, 169–180 (2018).
pubmed: 29972778
doi: 10.1016/j.celrep.2018.06.005
Mohapatra, A. et al. Group 2 innate lymphoid cells utilize the IRF4-IL-9 module to coordinate epithelial cell maintenance of lung homeostasis. Mucosal Immunol. 9, 275–286 (2016).
pubmed: 26129648
doi: 10.1038/mi.2015.59
Gasteiger, G., Fan, X., Dikiy, S., Lee, S. Y. & Rudensky, A. Y. Tissue residency of innate lymphoid cells in lymphoid and nonlymphoid organs. Science (New York, NY) 350, 981–985 (2015).
doi: 10.1126/science.aac9593
Maazi, H. et al. ICOS:ICOS-ligand interaction is required for type 2 innate lymphoid cell function, homeostasis, and induction of airway hyperreactivity. Immunity 42, 538–551 (2015).
pubmed: 25769613
pmcid: 4366271
doi: 10.1016/j.immuni.2015.02.007
Molofsky, A. B. et al. Interleukin-33 and interferon-gamma counter-regulate Group 2 innate lymphoid cell activation during immune perturbation. Immunity 43, 161–174 (2015).
pubmed: 26092469
pmcid: 4512852
doi: 10.1016/j.immuni.2015.05.019
Rigas, D. et al. Type 2 innate lymphoid cell suppression by regulatory T cells attenuates airway hyperreactivity and requires inducible T-cell costimulator-inducible T-cell costimulator ligand interaction. J. Allergy Clin. Immunol. 139, 1468–1477.e1462 (2017).
pubmed: 27717665
doi: 10.1016/j.jaci.2016.08.034
Ogasawara, N. et al. IL-10, TGF-beta, and glucocorticoid prevent the production of type 2 cytokines in human group 2 innate lymphoid cells. J. Allergy Clin. Immunol. 141, 1147–1151.e1148 (2018).
pubmed: 29074458
doi: 10.1016/j.jaci.2017.09.025
Denney, L. et al. Pulmonary epithelial cell-derived cytokine TGF-beta1 is a critical cofactor for enhanced innate lymphoid cell function. Immunity 43, 945–958 (2015).
pubmed: 26588780
pmcid: 4658339
doi: 10.1016/j.immuni.2015.10.012
Halim, T. Y. F. et al. Tissue-restricted adaptive Type 2 immunity is orchestrated by expression of the costimulatory molecule OX40L on Group 2 innate lymphoid cells. Immunity 48, 1195–1207.e1196 (2018).
pubmed: 29907525
pmcid: 6015114
doi: 10.1016/j.immuni.2018.05.003
Scheiermann C., Gibbs J., Ince L., Loudon A. Clocking in to immunity. Nat. Rev. Immunol. 18, 423–437 (2018).
pubmed: 29662121
doi: 10.1038/s41577-018-0008-4
Stratmann, M. & Schibler, U. Properties, entrainment, and physiological functions of mammalian peripheral oscillators. J. Biol. Rhythms 21, 494–506 (2006).
pubmed: 17107939
doi: 10.1177/0748730406293889
Mohawk, J. A., Green, C. B. & Takahashi, J. S. Central and peripheral circadian clocks in mammals. Annu. Rev. Neurosci. 35, 445–462 (2012).
pubmed: 22483041
pmcid: 3710582
doi: 10.1146/annurev-neuro-060909-153128
Sato, T. K. et al. A functional genomics strategy reveals Rora as a component of the mammalian circadian clock. Neuron 43, 527–537 (2004).
pubmed: 15312651
doi: 10.1016/j.neuron.2004.07.018
Yu, X. et al. TH17 cell differentiation is regulated by the circadian clock. Science (New York, NY) 342, 727–730 (2013).
doi: 10.1126/science.1243884
Gibbs, J. E. et al. The nuclear receptor REV-ERBalpha mediates circadian regulation of innate immunity through selective regulation of inflammatory cytokines. Proc. . Natl. Acad. Sci. USA 109, 582–587 (2012).
pubmed: 22184247
doi: 10.1073/pnas.1106750109
Pariollaud M. et al. Circadian clock component REV-ERBalpha controls homeostatic regulation of pulmonary inflammation. J. Clin. Invest. 128, 2281–2296 (2018).
Nguyen, K. D. et al. Circadian gene Bmal1 regulates diurnal oscillations of Ly6C(hi) inflammatory monocytes. Science (New York, NY) 341, 1483–1488 (2013).
doi: 10.1126/science.1240636
Curtis, A. M. et al. Circadian control of innate immunity in macrophages by miR-155 targeting Bmal1. Proc. Natl. Acad. Sci. USA 112, 7231–7236 (2015).
pubmed: 25995365
pmcid: 4466714
doi: 10.1073/pnas.1501327112
Singh, P. B. et al. MicroRNA regulation of type 2 innate lymphoid cell homeostasis and function in allergic inflammation. J. Exp. Med. 214, 3627–3643 (2017).
pubmed: 29122948
pmcid: 5716040
doi: 10.1084/jem.20170545
Johansson, K., Malmhall, C., Ramos-Ramirez, P. & Radinger, M. MicroRNA-155 is a critical regulator of type 2 innate lymphoid cells and IL-33 signaling in experimental models of allergic airway inflammation. J. Allergy Clin. Immunol. 139, 1007–1016.e1009 (2017).
pubmed: 27492144
doi: 10.1016/j.jaci.2016.06.035
Harmar, A. J. et al. The VPAC(2) receptor is essential for circadian function in the mouse suprachiasmatic nuclei. Cell 109, 497–508 (2002).
pubmed: 12086606
doi: 10.1016/S0092-8674(02)00736-5
Nussbaum, J. C. et al. Type 2 innate lymphoid cells control eosinophil homeostasis. Nature 502, 245–248 (2013).
pubmed: 24037376
pmcid: 3795960
doi: 10.1038/nature12526
Carey, M. A. et al. It’s all about sex: gender, lung development and lung disease. Trends Endocrinol. Metab.: TEM 18, 308–313 (2007).
pubmed: 17764971
doi: 10.1016/j.tem.2007.08.003
Almqvist, C., Worm, M. & Leynaert, B. working group of GALENWPG. Impact of gender on asthma in childhood and adolescence: a GA2LEN review. Allergy 63, 47–57 (2008).
pubmed: 17822448
Cephus, J. Y. et al. Testosterone Attenuates Group 2 Innate Lymphoid Cell-Mediated AirwayInflammation. Cell Rep. 21, 2487–2499 (2017).
pubmed: 29186686
pmcid: 5731254
doi: 10.1016/j.celrep.2017.10.110
Oertelt-Prigione, S. The influence of sex and gender on the immune response. Autoimmun. Rev. 11, A479–A485 (2012).
pubmed: 22155201
doi: 10.1016/j.autrev.2011.11.022
Kawana, K., Kawana, Y. & Schust, D. J. Female steroid hormones use signal transducers and activators of transcription protein-mediated pathways to modulate the expression of T-bet in epithelial cells: a mechanism for local immune regulation in the human reproductive tract. Mol. Endocrinol. (Baltim., Md) 19, 2047–2059 (2005).
doi: 10.1210/me.2004-0489
Pan, T. et al. 17beta-Oestradiol enhances the expansion and activation of myeloid-derived suppressor cells via signal transducer and activator of transcription (STAT)-3 signalling in human pregnancy. Clin. Exp. Immunol. 185, 86–97 (2016).
pubmed: 26969967
pmcid: 4908292
doi: 10.1111/cei.12790
Douin-Echinard, V. et al. Estrogen receptor alpha, but not beta, is required for optimal dendritic cell differentiation and [corrected] CD40-induced cytokine production. J. Immunol. (Baltim., Md: 1950) 180, 3661–3669 (2008).
doi: 10.4049/jimmunol.180.6.3661
Laffont, S., Seillet, C. & Guery, J. C. Estrogen Receptor-Dependent Regulation of Dendritic Cell Development and Function. Front. Immunol. 8, 108 (2017).
pubmed: 28239379
pmcid: 5300975
Butts, C. L. et al. Progesterone inhibits mature rat dendritic cells in a receptor-mediated fashion. Int. Immunol. 19, 287–296 (2007).
pubmed: 17289656
doi: 10.1093/intimm/dxl145
Zhao, X. et al. Progesterone enhances immunoregulatory activity of human mesenchymal stem cells via PGE2 and IL-6. Am. J. Reprod. Immunol. (New York, NY: 1989) 68, 290–300 (2012).
doi: 10.1111/j.1600-0897.2012.01163.x
Enninga, E. A. et al. Immunomodulatory effects of sex hormones: requirements for pregnancy and relevance in melanoma. Mayo Clin. Proc. 89, 520–535 (2014).
pubmed: 24684874
doi: 10.1016/j.mayocp.2014.01.006
Hepworth, M. R., Hardman, M. J. & Grencis, R. K. The role of sex hormones in the development of Th2 immunity in a gender-biased model of Trichuris muris infection. Eur. J. Immunol. 40, 406–416 (2010).
pubmed: 19950176
doi: 10.1002/eji.200939589
Arruvito, L. et al. NK cells expressing a progesterone receptor are susceptible to progesterone-induced apoptosis. J. Immunol. (Baltim., Md: 1950) 180, 5746–5753 (2008).
doi: 10.4049/jimmunol.180.8.5746
Llewelyn, D. E., Read, G. F. & Hillier, S. G. Proceedings: Novel procedure for the simultaneous determination of testosterone and 5alpha-dihydrotestosterone concentrations in unpurified plasma extracts by radioimmunoassay. J. Endocrinol. 67, 7p–8p (1975).
pubmed: 1206320
Penning, T. M., Bauman, D. R., Jin, Y. & Rizner, T. L. Identification of the molecular switch that regulates access of 5alpha-DHT to the androgen receptor. Mol. Cell. Endocrinol. 265-266, 77–82 (2007).
pubmed: 17223255
pmcid: 1857325
doi: 10.1016/j.mce.2006.12.007
Laffont, S. et al. Androgen signaling negatively controls group 2 innate lymphoid cells. J. Exp. Med. 214, 1581–1592 (2017).
pubmed: 28484078
pmcid: 5461006
doi: 10.1084/jem.20161807
Kadel, S. et al. A Major Population of Functional KLRG1(-) ILC2s in Female Lungs Contributes to a Sex Bias in ILC2 Numbers. ImmunoHorizons 2, 74–86 (2018).
pubmed: 29568816
pmcid: 5860819
doi: 10.4049/immunohorizons.1800008
Russi, A. E., Ebel, M. E., Yang, Y. & Brown, M. A. Male-specific IL-33 expression regulates sex-dimorphic EAE susceptibility. Proc. Natl Acad. Sci. USA 115, E1520–e1529 (2018).
pubmed: 29378942
pmcid: 5816140
doi: 10.1073/pnas.1710401115
Russi, A. E., Walker-Caulfield, M. E., Ebel, M. E. & Brown, M. A. Cutting edge: c-Kit signaling differentially regulates type 2 innate lymphoid cell accumulation and susceptibility to central nervous system demyelination in male and female SJL mice. J. Immunol. (Baltim., Md: 1950) 194, 5609–5613 (2015).
doi: 10.4049/jimmunol.1500068
Bartemes, K., Chen, C. C., Iijima, K., Drake, L. & Kita, H. IL-33-Responsive Group 2 Innate Lymphoid Cells Are Regulated by Female Sex Hormones in the Uterus. J. Immunol. (Baltim., Md: 1950) 200, 229–236 (2018).
doi: 10.4049/jimmunol.1602085
Saluzzo, S. et al. First-Breath-Induced Type 2 Pathways Shape the Lung ImmuneEnvironment. . Cell Rep. 18, 1893–1905 (2017).
pubmed: 28228256
pmcid: 5329122
doi: 10.1016/j.celrep.2017.01.071
Steer, C. A. et al. Group 2 innate lymphoid cell activation in the neonatal lung drives type 2 immunity and allergen sensitization. J. Allergy Clin. Immunol. 140, 593–595.e593 (2017).
pubmed: 28216436
doi: 10.1016/j.jaci.2016.12.984
de Kleer, I. M. et al. Perinatal Activation of the Interleukin-33 Pathway Promotes Type 2 Immunity in the Developing Lung. Immunity 45, 1285–1298 (2016).
pubmed: 27939673
doi: 10.1016/j.immuni.2016.10.031
Saravia, J. et al. Respiratory Syncytial Virus Disease Is Mediated by Age-Variable IL-33. PLoS. Pathog. 11, e1005217 (2015).
pubmed: 26473724
pmcid: 4608776
doi: 10.1371/journal.ppat.1005217
PrabhuDas, M. et al. Challenges in infant immunity: implications for responses to infection and vaccines. Nat. Immunol. 12, 189–194 (2011).
pubmed: 21321588
doi: 10.1038/ni0311-189
Mohr, E. & Siegrist, C. A. Vaccination in early life: standing up to the challenges. Curr. Opin. Immunol. 41, 1–8 (2016).
pubmed: 27104290
doi: 10.1016/j.coi.2016.04.004
Kurowska-Stolarska, M. et al. IL-33 amplifies the polarization of alternatively activated macrophages that contribute to airway inflammation. J. Immunol. (Baltim., Md: 1950) 183, 6469–6477 (2009).
doi: 10.4049/jimmunol.0901575
Jones, C. V. et al. M2 macrophage polarisation is associated with alveolar formation during postnatal lung development. Respir. Res. 14, 41 (2013).
pubmed: 23560845
pmcid: 3626876
doi: 10.1186/1465-9921-14-41
Lechner, A. J. et al. Recruited Monocytes and Type 2 Immunity Promote Lung Regeneration following Pneumonectomy. Cell. Stem. Cell. 21, 120–134.e127 (2017).
pubmed: 28506464
pmcid: 5501755
doi: 10.1016/j.stem.2017.03.024
Sugita, K. et al. Type 2 innate lymphoid cells disrupt bronchial epithelial barrier integrity by targeting tight junctions through IL-13 in asthmatic patients. J. Allergy Clin. Immunol. 141, 300–310.e311 (2018).
pubmed: 28392332
doi: 10.1016/j.jaci.2017.02.038
Franco, R., Schoneveld, O. J., Pappa, A. & Panayiotidis, M. I. The central role of glutathione in the pathophysiology of human diseases. Arch. Physiol. Biochem. 113, 234–258 (2007).
pubmed: 18158646
doi: 10.1080/13813450701661198
Papa, I. et al. TFH-derived dopamine accelerates productive synapses in germinal centres. Nature 547, 318–323 (2017).
pubmed: 28700579
pmcid: 5540173
doi: 10.1038/nature23013
Gadani, S. P., Smirnov, I., Smith, A. T., Overall, C. C. & Kipnis, J. Characterization of meningeal type 2 innate lymphocytes and their response to CNS injury. J. Exp. Med. 214, 285–296 (2017).
pubmed: 27994070
doi: 10.1084/jem.20161982
Hedrick, J. A. et al. Identification of a human gastrointestinal tract and immune system receptor for the peptide neuromedin U. Mol. Pharmacol. 58, 870–875 (2000).
pubmed: 10999960
doi: 10.1124/mol.58.4.870
Moriyama, M. et al. The neuropeptide neuromedin U promotes inflammation by direct activation of mast cells. J. Exp. Med. 202, 217–224 (2005).
pubmed: 16009716
pmcid: 2213011
doi: 10.1084/jem.20050248
Moriyama, M. et al. The neuropeptide neuromedin U activates eosinophils and is involved in allergen-induced eosinophilia. Am. J. Physiol. Lung Cell. Mol. Physiol. 290, L971–L977 (2006).
pubmed: 16373672
doi: 10.1152/ajplung.00345.2005
Klose, C. S. N. et al. The neuropeptide neuromedin U stimulates innate lymphoid cells and type 2 inflammation. Nature 549, 282–286 (2017).
pubmed: 28869965
pmcid: 6066372
doi: 10.1038/nature23676
Wallrapp, A. et al. The neuropeptide NMU amplifies ILC2-driven allergic lung inflammation. Nature 549, 351–356 (2017).
pubmed: 28902842
pmcid: 5746044
doi: 10.1038/nature24029
Cardoso, V. et al. Neuronal regulation of type 2 innate lymphoid cells via neuromedin U. Nature 549, 277–281 (2017).
pubmed: 28869974
pmcid: 5714273
doi: 10.1038/nature23469
Modena, B. D. et al. Gene Expression Correlated with Severe Asthma Characteristics Reveals Heterogeneous Mechanisms of Severe Disease. Am. J. Respir. Crit. Care. Med. 195, 1449–1463 (2017).
pubmed: 27984699
pmcid: 5470748
doi: 10.1164/rccm.201607-1407OC
Beale, J. et al. Rhinovirus-induced IL-25 in asthma exacerbation drives type 2 immunity and allergic pulmonary inflammation. Sci. Transl. Med. 6, 256ra134 (2014).
pubmed: 25273095
pmcid: 4246061
doi: 10.1126/scitranslmed.3009124
Sui P. et al. Pulmonary neuroendocrine cells amplify allergic asthma responses. Science (New York, NY) 360 (2018).
Moriyama, S. et al. beta2-adrenergic receptor-mediated negative regulation of group 2 innate lymphoid cell responses. Science (New York, NY) 359, 1056–1061 (2018).
doi: 10.1126/science.aan4829
Hammad, H. & Lambrecht, B. N. Barrier Epithelial Cells and the Control of Type 2 Immunity. Immunity 43, 29–40 (2015).
pubmed: 26200011
doi: 10.1016/j.immuni.2015.07.007
Kubo, M. Innate and adaptive type 2 immunity in lung allergic inflammation. Immunol. Rev. 278, 162–172 (2017).
pubmed: 28658559
doi: 10.1111/imr.12557
Hansbro, P. M., Beagley, K. W., Horvat, J. C. & Gibson, P. G. Role of atypical bacterial infection of the lung in predisposition/protection of asthma. Pharmacol. Ther. 101, 193–210 (2004).
pubmed: 15030999
doi: 10.1016/j.pharmthera.2003.10.007
Hansbro, N. G., Horvat, J. C., Wark, P. A. & Hansbro, P. M. Understanding the mechanisms of viral induced asthma: new therapeutic directions. Pharmacol. Ther. 117, 313–353 (2008).
pubmed: 18234348
doi: 10.1016/j.pharmthera.2007.11.002
pmcid: 7112677
Hansbro, P. M. et al. Mechanisms and treatments for severe, steroid-resistant allergic airway disease and asthma. Immunol. Rev. 278, 41–62 (2017).
pubmed: 28658552
doi: 10.1111/imr.12543
Hansbro, P. M., Kaiko, G. E. & Foster, P. S. Cytokine/anti-cytokine therapy - novel treatments for asthma? Br. J. Pharmacol. 163, 81–95 (2011).
pubmed: 21232048
pmcid: 3085870
doi: 10.1111/j.1476-5381.2011.01219.x
Kim, R. Y. et al. MicroRNA-21 drives severe, steroid-insensitive experimental asthma by amplifying phosphoinositide 3-kinase-mediated suppression of histone deacetylase 2. J. Allergy Clin. Immunol. 139, 519–532 (2017).
pubmed: 27448447
doi: 10.1016/j.jaci.2016.04.038
Kim, R. Y. et al. Role for NLRP3 Inflammasome-mediated, IL-1beta-Dependent Responses in Severe, Steroid-Resistant Asthma. Am. J. Respir. Crit. Care. Med. 196, 283–297 (2017).
pubmed: 28252317
doi: 10.1164/rccm.201609-1830OC
Moffatt, M. F. et al. A large-scale, consortium-based genomewide association study of asthma. N. Engl. J. Med. 363, 1211–1221 (2010).
pubmed: 20860503
pmcid: 4260321
doi: 10.1056/NEJMoa0906312
Stadhouders R. et al. Epigenome analysis links gene regulatory elements in group 2 innate lymphocytes to asthma susceptibility. J. Allergy Clin. Immunol. 142, 1793–1807 (2018).
doi: 10.1016/j.jaci.2017.12.1006
Christianson, C. A. et al. Persistence of asthma requires multiple feedback circuits involving type 2 innate lymphoid cells and IL-33. J. Allergy Clin. Immunol. 136, 59–68.e14 (2015).
pubmed: 25617223
pmcid: 4494983
doi: 10.1016/j.jaci.2014.11.037
Smith, S. G. et al. Increased numbers of activated group 2 innate lymphoid cells in the airways of patients with severe asthma and persistent airway eosinophilia. J. Allergy Clin. Immunol. 137, 75–86.e78 (2016).
pubmed: 26194544
doi: 10.1016/j.jaci.2015.05.037
Hirose, K., Iwata, A., Tamachi, T. & Nakajima, H. Allergic airway inflammation: key players beyond the Th2 cell pathway. Immunol. Rev. 278, 145–161 (2017).
pubmed: 28658544
doi: 10.1111/imr.12540
Bartemes, K. R., Kephart, G. M., Fox, S. J. & Kita, H. Enhanced innate type 2 immune response in peripheral blood from patients with asthma. J. Allergy Clin. Immunol. 134, 671–678.e674 (2014).
pubmed: 25171868
pmcid: 4149890
doi: 10.1016/j.jaci.2014.06.024
Martinez-Gonzalez, I. et al. Allergen-Experienced Group 2 Innate Lymphoid Cells Acquire Memory-like Properties and Enhance Allergic Lung Inflammation. Immunity 45, 198–208 (2016).
pubmed: 27421705
doi: 10.1016/j.immuni.2016.06.017
Barnig, C. et al. Lipoxin A4 regulates natural killer cell and type 2 innate lymphoid cell activation in asthma. Sci. Transl. Med. 5, 174ra126 (2013).
doi: 10.1126/scitranslmed.3004812
Britanova, L. & Diefenbach, A. Interplay of innate lymphoid cells and the microbiota. Immunol. Rev. 279, 36–51 (2017).
pubmed: 28856740
doi: 10.1111/imr.12580
Monticelli, L. A. et al. Arginase 1 is an innate lymphoid-cell-intrinsic metabolic checkpoint controlling type 2 inflammation. Nat. Immunol. 17, 656–665 (2016).
pubmed: 27043409
pmcid: 4873382
doi: 10.1038/ni.3421
Essilfie, A. T. et al. Macrolide therapy suppresses key features of experimental steroid-sensitive and steroid-insensitive asthma. Thorax 70, 458–467 (2015).
pubmed: 25746630
doi: 10.1136/thoraxjnl-2014-206067
Gauvreau, G. M. et al. Effects of an anti-TSLP antibody on allergen-induced asthmatic responses. N. Engl. J. Med. 370, 2102–2110 (2014).
pubmed: 24846652
doi: 10.1056/NEJMoa1402895
Erpenbeck, V. J. et al. The oral CRTh2 antagonist QAW039 (fevipiprant): A phase II study in uncontrolled allergic asthma. Pulm. Pharmacol. Ther. 39, 54–63 (2016).
pubmed: 27354118
doi: 10.1016/j.pupt.2016.06.005
Kearley, J. et al. Cigarette smoke silences innate lymphoid cell function and facilitates an exacerbated type I interleukin-33-dependent response to infection. Immunity 42, 566–579 (2015).
pubmed: 25786179
doi: 10.1016/j.immuni.2015.02.011
Donovan C. et al. Roles for T/B lymphocytes and ILC2s in experimental chronic obstructive pulmonary disease. J. Leukoc. Biol. 105, 143–150 (2018).
pubmed: 30260499
doi: 10.1002/JLB.3AB0518-178R
Beckett, E. L. et al. A new short-term mouse model of chronic obstructive pulmonary disease identifies a role for mast cell tryptase in pathogenesis. J. Allergy Clin. Immunol. 131, 752–762 (2013).
pubmed: 23380220
pmcid: 4060894
doi: 10.1016/j.jaci.2012.11.053
Hsu, A. C. et al. Targeting PI3K-p110alpha Suppresses Influenza Virus Infection in Chronic Obstructive Pulmonary Disease. Am. J. Respir. Crit. Care. Med. 191, 1012–1023 (2015).
pubmed: 25751541
doi: 10.1164/rccm.201501-0188OC
Hsu, A. C. et al. MicroRNA-125a and -b inhibit A20 and MAVS to promote inflammation and impair antiviral response in COPD. JCI Insight 2, e90443 (2017).
pubmed: 28405612
pmcid: 5374076
doi: 10.1172/jci.insight.90443
Li, D. et al. IL-33 promotes ST2-dependent lung fibrosis by the induction of alternatively activated macrophages and innate lymphoid cells in mice. J. Allergy Clin. Immunol. 134, 1422–1432.e1411 (2014).
pubmed: 24985397
pmcid: 4258609
doi: 10.1016/j.jaci.2014.05.011
Hams, E. et al. IL-25 and type 2 innate lymphoid cells induce pulmonary fibrosis. Proc. Natl. Acad. Sci. USA 111, 367–372 (2014).
pubmed: 24344271
doi: 10.1073/pnas.1315854111
Vannella, K. M. et al. Combinatorial targeting of TSLP, IL-25, and IL-33 in type 2 cytokine-driven inflammation and fibrosis. Sci. Transl. Med. 8, 337ra365 (2016).
doi: 10.1126/scitranslmed.aaf1938
Moretti, S. et al. A mast cell-ILC2-Th9 pathway promotes lung inflammation in cystic fibrosis. Nat. Commun. 8, 14017 (2017).
pubmed: 28090087
pmcid: 5241810
doi: 10.1038/ncomms14017
Nausch N., Mutapi F. Group 2 ILCs: A way of enhancing immune protection against human helminths? Parasite Immunol. 40, (2018).
pmcid: 5811928
doi: 10.1111/pim.12450
Hong, J. Y. et al. Neonatal rhinovirus induces mucous metaplasia and airways hyperresponsiveness through IL-25 and type 2 innate lymphoid cells. J. Allergy Clin. Immunol. 134, 429–439 (2014).
pubmed: 24910174
pmcid: 4119851
doi: 10.1016/j.jaci.2014.04.020
Han, M. et al. IFN-gamma Blocks Development of an Asthma Phenotype in Rhinovirus-Infected Baby Mice by Inhibiting Type 2 Innate Lymphoid Cells. Am. J. Respir. Cell Mol. Biol. 56, 242–251 (2017).
pubmed: 27679954
pmcid: 5359646
Rajput, C. et al. RORalpha-dependent type 2 innate lymphoid cells are required and sufficient for mucous metaplasia in immature mice. Am. J. Physiol. Lung Cell. Mol. Physiol. 312, L983–l993 (2017).
pubmed: 28360114
pmcid: 5495952
doi: 10.1152/ajplung.00368.2016
Han, M. et al. The Innate Cytokines IL-25, IL-33, and TSLP Cooperate in the Induction of Type 2 Innate Lymphoid Cell Expansion and Mucous Metaplasia in Rhinovirus-Infected Immature Mice. J. Immunol. (Baltim., Md: 1950) 199, 1308–1318 (2017).
doi: 10.4049/jimmunol.1700216
Jackson, D. J. et al. IL-33-dependent type 2 inflammation during rhinovirus-induced asthma exacerbations in vivo. Am. J. Respir. Crit. Care. Med. 190, 1373–1382 (2014).
pubmed: 25350863
pmcid: 4299647
doi: 10.1164/rccm.201406-1039OC
Stier, M. T. et al. Respiratory syncytial virus infection activates IL-13-producing group 2 innate lymphoid cells through thymic stromal lymphopoietin. J. Allergy Clin. Immunol. 138, 814–824.e811 (2016).
pubmed: 27156176
pmcid: 5014571
doi: 10.1016/j.jaci.2016.01.050
Califano, D. et al. IFN-gamma increases susceptibility to influenza A infection through suppression of group II innate lymphoid cells. Mucosal Immunol. 11, 209–219 (2018).
pubmed: 28513592
doi: 10.1038/mi.2017.41
Chang, Y. J. et al. Innate lymphoid cells mediate influenza-induced airway hyper-reactivity independently of adaptive immunity. Nat. Immunol. 12, 631–638 (2011).
pubmed: 21623379
pmcid: 3417123
doi: 10.1038/ni.2045
Gorski, S. A., Hahn, Y. S. & Braciale, T. J. Group 2 innate lymphoid cell production of IL-5 is regulated by NKT cells during influenza virus infection. PLoS. Pathog. 9, e1003615 (2013).
pubmed: 24068930
pmcid: 3777868
doi: 10.1371/journal.ppat.1003615
Oliphant, C. J. et al. MHCII-mediated dialog between group 2 innate lymphoid cells and CD4(+) T cells potentiates type 2 immunity and promotes parasitic helminth expulsion. Immunity 41, 283–295 (2014).
pubmed: 25088770
pmcid: 4148706
doi: 10.1016/j.immuni.2014.06.016
Molofsky, A. B. et al. Innate lymphoid type 2 cells sustain visceral adipose tissue eosinophils and alternatively activated macrophages. J. Exp. Med. 210, 535–549 (2013).
pubmed: 23420878
pmcid: 3600903
doi: 10.1084/jem.20121964
Walker, J. A. et al. Bcl11b is essential for group 2 innate lymphoid cell development. J. Exp. Med. 212, 875–882 (2015).
pubmed: 25964370
pmcid: 4451131
doi: 10.1084/jem.20142224
Li, B. W. et al. T cells are necessary for ILC2 activation in house dust mite-induced allergic airway inflammation in mice. Eur. J. Immunol. 46, 1392–1403 (2016).
pubmed: 27062360
doi: 10.1002/eji.201546119
Li, B. W. S., Beerens, D., Brem, M. D. & Hendriks, R. W. Characterization of Group 2 Innate Lymphoid Cells in Allergic Airway Inflammation Models in the Mouse. Methods Mol. Biol. (Clifton, NJ) 1559, 169–183 (2017).
doi: 10.1007/978-1-4939-6786-5_12
Hung, L. Y. et al. IL-33 drives biphasic IL-13 production for noncanonical Type 2 immunity against hookworms. Proc. Natl. Acad. Sci. USA 110, 282–287 (2013).
pubmed: 23248269
doi: 10.1073/pnas.1206587110
Doherty, T. A. et al. Lung type 2 innate lymphoid cells express cysteinyl leukotriene receptor 1, which regulates TH2 cytokine production. J. Allergy Clin. Immunol. 132, 205–213 (2013).
pubmed: 23688412
pmcid: 3704056
doi: 10.1016/j.jaci.2013.03.048
Beale, J. et al. Rhinovirus-induced IL-25 in asthma exacerbation drives type 2 immunity and allergic pulmonary inflammation. Sci. Transl. Med 6, 256ra134 (2014).
pubmed: 25273095
pmcid: 4246061
doi: 10.1126/scitranslmed.3009124
Shin, H. W. et al. IL-25 as a novel therapeutic target in nasal polyps of patients with chronic rhinosinusitis. J. Allergy Clin. Immunol. 135, 1476–1485.e1477 (2015).
pubmed: 25725991
doi: 10.1016/j.jaci.2015.01.003
Ballantyne, S. J. et al. Blocking IL-25 prevents airway hyperresponsiveness in allergic asthma. J. Allergy Clin. Immunol. 120, 1324–1331 (2007).
pubmed: 17889290
doi: 10.1016/j.jaci.2007.07.051
Scott, I. C., Houslay, K. F. & Cohen, E. S. Prospects to translate the biology of IL-33 and ST2 during organ transplantation into therapeutics to treat graft-versus-host disease. Ann. Transl. Med. 4, 500 (2016).
Corren, J. et al. Tezepelumab in Adults with Uncontrolled Asthma. N. Engl. J. Med. 377, 936–946 (2017).
pubmed: 28877011
doi: 10.1056/NEJMoa1704064
Antoniu, S. A. MEDI-528, an anti-IL-9 humanized antibody for the treatment of asthma. Curr. Opin. Mol. Ther. 12, 233–239 (2010).
pubmed: 20373267
Hall, I. P. et al. Efficacy of BI 671800, an oral CRTH2 antagonist, in poorly controlled asthma as sole controller and in the presence of inhaled corticosteroid treatment. Pulm. Pharmacol. Ther. 32, 37–44 (2015).
pubmed: 25861737
doi: 10.1016/j.pupt.2015.03.003
Barnes, N. et al. A randomized, double-blind, placebo-controlled study of the CRTH2 antagonist OC000459 in moderate persistent asthma. Clin. Exp. Allergy.: J. Br. Soc. Allergy. Clin. Immunol. 42, 38–48 (2012).
doi: 10.1111/j.1365-2222.2011.03813.x
Kuna, P., Bjermer, L. & Tornling, G. Two Phase II randomized trials on the CRTh2 antagonist AZD1981 in adults with asthma. Drug Des. Dev. Ther. 10, 2759–2770 (2016).
doi: 10.2147/DDDT.S105142
Gonem, S. et al. Fevipiprant, a prostaglandin D2 receptor 2 antagonist, in patients with persistent eosinophilic asthma: a single-centre, randomised, double-blind, parallel-group, placebo-controlled trial. Lancet Respir. Med 4, 699–707 (2016).
pubmed: 27503237
doi: 10.1016/S2213-2600(16)30179-5
Huang, T. et al. Depletion of major pathogenic cells in asthma by targeting CRTh2. JCI Insight 1, e86689 (2016).
pubmed: 27699264
pmcid: 5033936
doi: 10.1172/jci.insight.86689
Xue, L. et al. Prostaglandin D2 activates group 2 innate lymphoid cells through chemoattractant receptor-homologous molecule expressed on TH2 cells. J. Allergy Clin. Immunol. 133, 1184–1194 (2014).
pubmed: 24388011
pmcid: 3979107
doi: 10.1016/j.jaci.2013.10.056
Bratt, J. M., Zeki, A. A., Last, J. A. & Kenyon, N. J. Competitive metabolism of L-arginine: arginase as a therapeutic target in asthma. J. Biomed. Res. 25, 299–308 (2011).
pubmed: 23554705
pmcid: 3596726
doi: 10.1016/S1674-8301(11)60041-9
Maarsingh, H. et al. Arginase inhibition protects against allergen-induced airway obstruction, hyperresponsiveness, and inflammation. Am. J. Respir. Crit. Care. Med. 178, 565–573 (2008).
pubmed: 18583571
doi: 10.1164/rccm.200710-1588OC
Meurs, H. et al. Increased arginase activity underlies allergen-induced deficiency of cNOS-derived nitric oxide and airway hyperresponsiveness. Br. J. Pharmacol. 136, 391–398 (2002).
pubmed: 12023942
pmcid: 1573363
doi: 10.1038/sj.bjp.0704725
van den Berg, M. P., Meurs, H. & Gosens, R. Targeting arginase and nitric oxide metabolism in chronic airway diseases and their co-morbidities. Curr. Opin. Pharmacol. 40, 126–133 (2018).
pubmed: 29729549
doi: 10.1016/j.coph.2018.04.010
Sel, S. et al. Effective prevention and therapy of experimental allergic asthma using a GATA-3-specific DNAzyme. J. Allergy Clin. Immunol. 121, 910–916.e915 (2008).
pubmed: 18325571
doi: 10.1016/j.jaci.2007.12.1175
Garn, H. & Renz, H. GATA-3-specific DNAzyme - A novel approach for stratified asthma therapy. Eur. J. Immunol. 47, 22–30 (2017).
pubmed: 27910098
doi: 10.1002/eji.201646450
Krug, N. et al. Allergen-induced asthmatic responses modified by a GATA3-specific DNAzyme. N. Engl. J. Med. 372, 1987–1995 (2015).
pubmed: 25981191
doi: 10.1056/NEJMoa1411776
Wenzel, S. et al. Dupilumab efficacy and safety in adults with uncontrolled persistent asthma despite use of medium-to-high-dose inhaled corticosteroids plus a long-acting beta2 agonist: a randomised double-blind placebo-controlled pivotal phase 2b dose-ranging trial. Lancet (Lond., Engl.) 388, 31–44 (2016).
doi: 10.1016/S0140-6736(16)30307-5
Simpson, E. L. et al. Two Phase 3 Trials of Dupilumab versus Placebo in Atopic Dermatitis. N. Engl. J. Med. 375, 2335–2348 (2016).
pubmed: 27690741
doi: 10.1056/NEJMoa1610020
Ortega, H. G. et al. Mepolizumab treatment in patients with severe eosinophilic asthma. N. Engl. J. Med. 371, 1198–1207 (2014).
pubmed: 25199059
doi: 10.1056/NEJMoa1403290
Pavord, I. D. et al. Mepolizumab for severe eosinophilic asthma (DREAM): a multicentre, double-blind, placebo-controlled trial. Lancet (Lond., Engl.) 380, 651–659 (2012).
doi: 10.1016/S0140-6736(12)60988-X
Busse, W. W., Ring, J., Huss-Marp, J. & Kahn, J. E. A review of treatment with mepolizumab, an anti-IL-5 mAb, in hypereosinophilic syndromes and asthma. J. Allergy Clin. Immunol. 125, 803–813 (2010).
pubmed: 20371394
doi: 10.1016/j.jaci.2009.11.048
Rothenberg, M. E. et al. Treatment of patients with the hypereosinophilic syndrome with mepolizumab. N. Engl. J. Med. 358, 1215–1228 (2008).
pubmed: 18344568
doi: 10.1056/NEJMoa070812
Brightling, C. E. et al. Efficacy and safety of tralokinumab in patients with severe uncontrolled asthma: a randomised, double-blind, placebo-controlled, phase 2b trial. Lancet Respir. Med. 3, 692–701 (2015).
pubmed: 26231288
doi: 10.1016/S2213-2600(15)00197-6
Hanania, N. A. et al. Efficacy and safety of lebrikizumab in patients with uncontrolled asthma (LAVOLTA I and LAVOLTA II): replicate, phase 3, randomised, double-blind, placebo-controlled trials. Lancet Respir. Med. 4, 781–796 (2016).
pubmed: 27616196
doi: 10.1016/S2213-2600(16)30265-X