Glucose 6-phosphate dehydrogenase 6-phosphogluconolactonase: characterization of the Plasmodium vivax enzyme and inhibitor studies.


Journal

Malaria journal
ISSN: 1475-2875
Titre abrégé: Malar J
Pays: England
ID NLM: 101139802

Informations de publication

Date de publication:
25 Jan 2019
Historique:
received: 23 08 2018
accepted: 16 01 2019
entrez: 27 1 2019
pubmed: 27 1 2019
medline: 8 2 2019
Statut: epublish

Résumé

Since malaria parasites highly depend on ribose 5-phosphate for DNA and RNA synthesis and on NADPH as a source of reducing equivalents, the pentose phosphate pathway (PPP) is considered an excellent anti-malarial drug target. In Plasmodium, a bifunctional enzyme named glucose 6-phosphate dehydrogenase 6-phosphogluconolactonase (GluPho) catalyzes the first two steps of the PPP. PfGluPho has been shown to be essential for the growth of blood stage Plasmodium falciparum parasites. Plasmodium vivax glucose 6-phosphate dehydrogenase (PvG6PD) was cloned, recombinantly produced in Escherichia coli, purified, and characterized via enzyme kinetics and inhibitor studies. The effects of post-translational cysteine modifications were assessed via western blotting and enzyme activity assays. Genetically encoded probes were employed to study the effects of G6PD inhibitors on the cytosolic redox potential of Plasmodium. Here the recombinant production and characterization of PvG6PD, the C-terminal and NADPH-producing part of PvGluPho, is described. A comparison with PfG6PD (the NADPH-producing part of PfGluPho) indicates that the P. vivax enzyme has higher K The characterization of PvG6PD makes this enzyme accessible to further drug discovery activities. In contrast to naturally occurring G6PD variants in the human host that can alter the kinetic properties of the enzyme and thus the redox homeostasis of the cells, the naturally occurring PfGluPho variants studied here are unlikely to have a major impact on the parasites' redox homeostasis. Several classes of inhibitors have been successfully tested and are presently being followed up.

Sections du résumé

BACKGROUND BACKGROUND
Since malaria parasites highly depend on ribose 5-phosphate for DNA and RNA synthesis and on NADPH as a source of reducing equivalents, the pentose phosphate pathway (PPP) is considered an excellent anti-malarial drug target. In Plasmodium, a bifunctional enzyme named glucose 6-phosphate dehydrogenase 6-phosphogluconolactonase (GluPho) catalyzes the first two steps of the PPP. PfGluPho has been shown to be essential for the growth of blood stage Plasmodium falciparum parasites.
METHODS METHODS
Plasmodium vivax glucose 6-phosphate dehydrogenase (PvG6PD) was cloned, recombinantly produced in Escherichia coli, purified, and characterized via enzyme kinetics and inhibitor studies. The effects of post-translational cysteine modifications were assessed via western blotting and enzyme activity assays. Genetically encoded probes were employed to study the effects of G6PD inhibitors on the cytosolic redox potential of Plasmodium.
RESULTS RESULTS
Here the recombinant production and characterization of PvG6PD, the C-terminal and NADPH-producing part of PvGluPho, is described. A comparison with PfG6PD (the NADPH-producing part of PfGluPho) indicates that the P. vivax enzyme has higher K
CONCLUSION CONCLUSIONS
The characterization of PvG6PD makes this enzyme accessible to further drug discovery activities. In contrast to naturally occurring G6PD variants in the human host that can alter the kinetic properties of the enzyme and thus the redox homeostasis of the cells, the naturally occurring PfGluPho variants studied here are unlikely to have a major impact on the parasites' redox homeostasis. Several classes of inhibitors have been successfully tested and are presently being followed up.

Identifiants

pubmed: 30683097
doi: 10.1186/s12936-019-2651-z
pii: 10.1186/s12936-019-2651-z
pmc: PMC6346587
doi:

Substances chimiques

Multienzyme Complexes 0
Protozoan Proteins 0
Recombinant Proteins 0
Glucosephosphate Dehydrogenase EC 1.1.1.49
Carboxylic Ester Hydrolases EC 3.1.1.-
6-phosphogluconolactonase EC 3.1.1.31

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

22

Subventions

Organisme : NIAID NIH HHS
ID : R01 AI104916
Pays : United States
Organisme : Deutsche Forschungsgemeinschaft
ID : Grant BE1540/23-2
Organisme : National Institutes of Health
ID : RO1 AI104916-01 A1

Références

Mol Biochem Parasitol. 1999 Mar 15;99(1):21-32
pubmed: 10215021
Parasitol Today. 1999 Sep;15(9):357-60
pubmed: 10461161
Eur J Biochem. 2001 Apr;268(7):2013-9
pubmed: 11277923
Mol Biochem Parasitol. 2003 Mar;127(1):1-8
pubmed: 12615331
Int J Parasitol. 2004 Feb;34(2):163-89
pubmed: 15037104
J Med Chem. 2004 Jun 3;47(12):2945-64
pubmed: 15163175
Mol Microbiol. 2004 Sep;53(5):1291-305
pubmed: 15387810
Cell Physiol Biochem. 2005;16(4-6):133-46
pubmed: 16301814
Food Chem Toxicol. 2007 Feb;45(2):286-95
pubmed: 17046132
Nat Genet. 2007 Jan;39(1):113-9
pubmed: 17159979
Exp Parasitol. 2007 Aug;116(4):414-8
pubmed: 17459379
Antimicrob Agents Chemother. 2009 Feb;53(2):622-30
pubmed: 19015351
Antimicrob Agents Chemother. 2009 Mar;53(3):1100-6
pubmed: 19015354
Genome Biol. 2008;9(12):R171
pubmed: 19077304
Trends Biochem Sci. 2009 Feb;34(2):85-96
pubmed: 19135374
Bioorg Med Chem. 2009 Jun 15;17(12):4206-15
pubmed: 19179083
Gene. 2010 Nov 1;467(1-2):1-12
pubmed: 20655368
Biochem J. 2011 Jun 15;436(3):641-50
pubmed: 21443518
Antioxid Redox Signal. 2011 Dec 1;15(11):2855-65
pubmed: 21595565
Cell Host Microbe. 2011 Oct 20;10(4):410-9
pubmed: 22018241
Antioxid Redox Signal. 2012 Aug 15;17(4):657-73
pubmed: 22085115
J Biol Chem. 2012 Feb 10;287(7):4411-8
pubmed: 22147701
Parasitol Res. 2012 Aug;111(2):525-9
pubmed: 22392134
J Biomol Screen. 2012 Jul;17(6):738-51
pubmed: 22496096
IUBMB Life. 2012 Jul;64(7):603-11
pubmed: 22639416
Neuroscience. 1990;38(3):819-28
pubmed: 2270145
J Med Chem. 2012 Aug 23;55(16):7262-72
pubmed: 22813531
Int J Med Microbiol. 2012 Oct;302(4-5):187-94
pubmed: 22939033
J Proteome Res. 2012 Nov 2;11(11):5323-37
pubmed: 23025827
PLoS One. 2012;7(9):e45906
pubmed: 23029306
Exp Parasitol. 2013 Jan;133(1):101-5
pubmed: 23178658
Adv Parasitol. 2013;81:133-201
pubmed: 23384623
Biochim Biophys Acta. 2013 May;1830(5):3173-81
pubmed: 23416062
Trends Parasitol. 2013 Jun;29(6):286-94
pubmed: 23623759
J Proteome Res. 2013 Sep 6;12(9):4028-45
pubmed: 23914800
Future Med Chem. 2013 Oct;5(16):1993-2006
pubmed: 24175748
Antioxid Redox Signal. 2014 Jun 20;20(18):2923-35
pubmed: 24256207
Curr Med Chem. 2014;21(15):1728-56
pubmed: 24304272
PLoS Pathog. 2013;9(12):e1003782
pubmed: 24348249
PLoS Negl Trop Dis. 2014 Aug 14;8(8):e3071
pubmed: 25121491
Nat Rev Microbiol. 2015 Mar;13(3):160-72
pubmed: 25659318
Protein J. 2015 Jun;34(3):193-204
pubmed: 25980795
Biochem Biophys Res Commun. 2015 Aug 14;464(1):236-43
pubmed: 26102026
FEBS J. 2015 Oct;282(19):3808-23
pubmed: 26198663
J Med Microbiol. 2016 Jul;65(7):678-687
pubmed: 27174292
J Biotechnol. 2016 Sep 10;233:6-16
pubmed: 27346232
Genome Med. 2016 Sep 07;8(1):92
pubmed: 27605022
Am J Trop Med Hyg. 2016 Dec 28;95(6 Suppl):35-51
pubmed: 27708191
Cell. 2016 Oct 20;167(3):610-624
pubmed: 27768886
Int J Mol Sci. 2016 Dec 09;17(12):
pubmed: 27941691
Mol Microbiol. 2017 Apr;104(2):306-318
pubmed: 28118506
PLoS One. 2017 Apr 3;12(4):e0174837
pubmed: 28369083
Angew Chem Int Ed Engl. 2017 Jun 12;56(25):7292-7296
pubmed: 28523851
Biol Chem. 2017 Nov 27;398(12):1267-1293
pubmed: 28822219
Sci Rep. 2017 Sep 5;7(1):10449
pubmed: 28874682
Nat Rev Microbiol. 2018 Mar;16(3):156-170
pubmed: 29355852
Lancet. 2018 Apr 21;391(10130):1608-1621
pubmed: 29631781
J Mol Biol. 2018 Oct 19;430(21):4049-4067
pubmed: 30098336
ACS Infect Dis. 2018 Nov 9;4(11):1601-1612
pubmed: 30129748
J Parasitol. 1979 Jun;65(3):418-20
pubmed: 383936
J Mol Biol. 1972 Jul 28;68(3):483-99
pubmed: 4403608
Lancet. 1981 Jul 11;2(8237):70-1
pubmed: 6113443
Lancet. 1994 Jan 29;343(8892):295
pubmed: 7905120
Arch Biochem Biophys. 1996 Jun 15;330(2):219-28
pubmed: 8660650
Blood. 1998 Oct 1;92(7):2527-34
pubmed: 9746794

Auteurs

Kristina Haeussler (K)

Biochemistry and Molecular Biology, Interdisciplinary Research Center, Justus Liebig University, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany.

Isabell Berneburg (I)

Biochemistry and Molecular Biology, Interdisciplinary Research Center, Justus Liebig University, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany.

Esther Jortzik (E)

Biochemistry and Molecular Biology, Interdisciplinary Research Center, Justus Liebig University, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany.

Julia Hahn (J)

Biochemistry and Molecular Biology, Interdisciplinary Research Center, Justus Liebig University, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany.

Mahsa Rahbari (M)

Biochemistry and Molecular Biology, Interdisciplinary Research Center, Justus Liebig University, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany.

Norma Schulz (N)

Biochemistry and Molecular Biology, Interdisciplinary Research Center, Justus Liebig University, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany.

Janina Preuss (J)

Biochemistry and Molecular Biology, Interdisciplinary Research Center, Justus Liebig University, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany.
Conrad Prebys Center for Chemical Genomics, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, 92037, USA.
Department of Pediatrics, University of California San Diego, San Diego, CA, 92093, USA.

Viktor A Zapol'skii (VA)

Institute of Organic Chemistry, Clausthal University of Technology, 38678, Clausthal-Zellerfeld, Germany.

Lars Bode (L)

Department of Pediatrics, University of California San Diego, San Diego, CA, 92093, USA.

Anthony B Pinkerton (AB)

Conrad Prebys Center for Chemical Genomics, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, 92037, USA.

Dieter E Kaufmann (DE)

Institute of Organic Chemistry, Clausthal University of Technology, 38678, Clausthal-Zellerfeld, Germany.

Stefan Rahlfs (S)

Biochemistry and Molecular Biology, Interdisciplinary Research Center, Justus Liebig University, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany.

Katja Becker (K)

Biochemistry and Molecular Biology, Interdisciplinary Research Center, Justus Liebig University, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany. katja.becker@uni-giessen.de.

Articles similaires

Eimeria tenella Animals Antigens, Protozoan Chickens Genetic Variation
Female Biofilms Animals Lactobacillus Mice

A molecular mechanism for bright color variation in parrots.

Roberto Arbore, Soraia Barbosa, Jindich Brejcha et al.
1.00
Animals Feathers Pigmentation Parrots Aldehyde Dehydrogenase

Detailing organelle division and segregation in Plasmodium falciparum.

Julie M J Verhoef, Cas Boshoven, Felix Evers et al.
1.00
Plasmodium falciparum Mitochondria Apicoplasts Humans Animals

Classifications MeSH