[Perspectives of genome editing in otorhinolaryngology].

Perspektiven der Genomeditierung in der Hals-Nasen-Ohren-Heilkunde.

Journal

HNO
ISSN: 1433-0458
Titre abrégé: HNO
Pays: Germany
ID NLM: 2985099R

Informations de publication

Date de publication:
Mar 2019
Historique:
pubmed: 29 1 2019
medline: 2 7 2019
entrez: 29 1 2019
Statut: ppublish

Résumé

Recent advances in DNA sequencing technology have enabled researchers to identify the genetic background underlying human illness. In addition, the latest genome editing technology, CRISPR-Cas9 (clustered regularly interspaced short palindromic repeats and CRISPR-associated protein 9), provides great potential to edit genomic DNA sequences precisely with high efficiency. This technology has been evaluated for treatment of genetic diseases in recently published preclinical studies. Since many such genetic disorders can affect functional structures in the head and neck area, the technology bears high therapeutic potential in otorhinolaryngology. In this article, we summarize the concept of CRISPR-Cas9-based therapies, recent achievements in preclinical applications, and future challenges for the implementation of this technology in otolaryngology. Genetic targeting strategies were analyzed or established using genome sequencing data derived from online databases and literature. Recent research on animal models has shown that genome editing can be used to treat genetic diseases by specifically targeting mutant genomic loci. For example, one preclinical study in the field of otolaryngology has demonstrated that inherited autosomal dominant deafness in mice can be treated using CRISPR-Cas9. Moreover, the same strategies can be used to establish applications for the treatment of head and neck cancer. The greatest challenge appears to be establishment of a system for the safe and efficient delivery of therapeutic nucleotides in clinics. In theory, genome editing could be used in otolaryngology to target disease-causing genomic loci specifically. However, various challenges have to be overcome until applications can be used clinically.

Sections du résumé

BACKGROUND BACKGROUND
Recent advances in DNA sequencing technology have enabled researchers to identify the genetic background underlying human illness. In addition, the latest genome editing technology, CRISPR-Cas9 (clustered regularly interspaced short palindromic repeats and CRISPR-associated protein 9), provides great potential to edit genomic DNA sequences precisely with high efficiency. This technology has been evaluated for treatment of genetic diseases in recently published preclinical studies. Since many such genetic disorders can affect functional structures in the head and neck area, the technology bears high therapeutic potential in otorhinolaryngology.
OBJECTIVE OBJECTIVE
In this article, we summarize the concept of CRISPR-Cas9-based therapies, recent achievements in preclinical applications, and future challenges for the implementation of this technology in otolaryngology.
MATERIALS AND METHODS METHODS
Genetic targeting strategies were analyzed or established using genome sequencing data derived from online databases and literature.
RESULTS RESULTS
Recent research on animal models has shown that genome editing can be used to treat genetic diseases by specifically targeting mutant genomic loci. For example, one preclinical study in the field of otolaryngology has demonstrated that inherited autosomal dominant deafness in mice can be treated using CRISPR-Cas9. Moreover, the same strategies can be used to establish applications for the treatment of head and neck cancer. The greatest challenge appears to be establishment of a system for the safe and efficient delivery of therapeutic nucleotides in clinics.
CONCLUSIONS CONCLUSIONS
In theory, genome editing could be used in otolaryngology to target disease-causing genomic loci specifically. However, various challenges have to be overcome until applications can be used clinically.

Identifiants

pubmed: 30689007
doi: 10.1007/s00106-019-0613-y
pii: 10.1007/s00106-019-0613-y
doi:

Types de publication

Journal Article Review

Langues

ger

Sous-ensembles de citation

IM

Pagination

184-189

Références

Nat Genet. 2002 Mar;30(3):277-84
pubmed: 11850618
Nat Genet. 2002 Mar;30(3):257-8
pubmed: 11850623
Curr Gene Ther. 2003 Feb;3(1):59-64
pubmed: 12553536
Cancer Treat Rev. 2003 Oct;29(5):371-87
pubmed: 12972356
Hum Mol Genet. 2005 Jun 15;14(12):1641-50
pubmed: 15857852
Science. 2012 Aug 17;337(6096):816-21
pubmed: 22745249
Nature. 2013 Mar 7;495(7439):50-1
pubmed: 23467164
Nat Biotechnol. 2013 Sep;31(9):822-6
pubmed: 23792628
Neuron. 2013 Aug 7;79(3):504-15
pubmed: 23871232
Cell. 2013 Sep 12;154(6):1380-9
pubmed: 23992846
Oral Oncol. 2014 Oct;50(10):930-41
pubmed: 24177052
Biomed Res Int. 2014;2014:612823
pubmed: 25136604
J Clin Invest. 2015 Jan;125(1):425-36
pubmed: 25500889
Nat Biotechnol. 2015 Feb;33(2):179-86
pubmed: 25503383
Nat Biotechnol. 2015 Feb;33(2):187-197
pubmed: 25513782
Adv Genet. 2015;89:235-262
pubmed: 25620013
Nature. 2015 Jan 29;517(7536):576-82
pubmed: 25631445
J Virol. 2015 May;89(10):5222-37
pubmed: 25787276
Nat Rev Drug Discov. 2015 May;14(5):346-65
pubmed: 25792261
Virol Sin. 2015 Apr;30(2):107-21
pubmed: 25910483
Nature. 2015 Jul 23;523(7561):481-5
pubmed: 26098369
Am J Hum Genet. 2016 Jun 2;98(6):1101-1113
pubmed: 27236922
Nat Biotechnol. 2017 Mar;35(3):264-272
pubmed: 28165476
Nucleic Acids Res. 2017 Jul 27;45(13):7897-7908
pubmed: 28575452
Nat Biotechnol. 2017 Aug;35(8):789-792
pubmed: 28581492
PLoS One. 2017 Aug 2;12(8):e0182373
pubmed: 28767691
Cancer Metastasis Rev. 2017 Sep;36(3):435-447
pubmed: 28819752
Nature. 2018 Jan 11;553(7687):217-221
pubmed: 29258297
Genome Res. 2018 Jan 11;:
pubmed: 29326299
Acta Oncol. 2018 Jul;57(7):874-882
pubmed: 29577784
Biochim Biophys Acta Mol Cell Res. 2018 Aug;1865(8):1025-1033
pubmed: 29630899
Biomedicines. 2018 Apr 17;6(2):null
pubmed: 29673141
J Virol. 2018 Oct 29;92(22):null
pubmed: 30111570
Cancer Res. 2018 Oct 1;78(19):5506-5512
pubmed: 30194069
Med Microbiol Immunol. 2018 Nov 1;:null
pubmed: 30386928

Auteurs

F Oppel (F)

Klinik für Hals-Nasen-Ohrenheilkunde, Kopf- und Halschirurgie, Klinikum Bielefeld, Teutoburger Str. 50, 33604, Bielefeld, Deutschland.

M Schürmann (M)

Klinik für Hals-Nasen-Ohrenheilkunde, Kopf- und Halschirurgie, Klinikum Bielefeld, Teutoburger Str. 50, 33604, Bielefeld, Deutschland.

S Shao (S)

Klinik für Hals-Nasen-Ohrenheilkunde, Kopf- und Halschirurgie, Klinikum Bielefeld, Teutoburger Str. 50, 33604, Bielefeld, Deutschland.

B Kaltschmidt (B)

AG Molekulare Neurobiologie, Universität Bielefeld, Bielefeld, Deutschland.

C Kaltschmidt (C)

Institut für Zellbiologie, Universität Bielefeld, Bielefeld, Deutschland.

H Sudhoff (H)

Klinik für Hals-Nasen-Ohrenheilkunde, Kopf- und Halschirurgie, Klinikum Bielefeld, Teutoburger Str. 50, 33604, Bielefeld, Deutschland. holger.sudhoff@rub.de.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH