Chemical shift assignment
HSQC
NMR
RNA recognition motif
Secondary structure
TDP-43
Journal
Biomolecular NMR assignments
ISSN: 1874-270X
Titre abrégé: Biomol NMR Assign
Pays: Netherlands
ID NLM: 101472371
Informations de publication
Date de publication:
04 2019
04 2019
Historique:
received:
21
09
2018
accepted:
28
12
2018
pubmed:
30
1
2019
medline:
20
8
2019
entrez:
30
1
2019
Statut:
ppublish
Résumé
TAR DNA-binding protein 43 (TDP-43) is a ubiquitously expressed nuclear protein that influences diverse cellular processes by regulating alternative splicing of RNA and microRNA biogenesis. It is also a pathological protein found in sporadic ALS and in the most common subtype of frontotemporal lobar degeneration with ubiquitinated inclusions (FLTD-U). TDP-43 has two tandem RNA-binding domains, RRM1 and RRM2. The NMR structure of TDP-43 was solved in the presence of UG-rich RNA sequences bound to the RRM1 and RRM2 domains. Here we report the backbone assignment of apo TDP-43. The chemical shift (HN, N, C, C
Identifiants
pubmed: 30694439
doi: 10.1007/s12104-018-09870-x
pii: 10.1007/s12104-018-09870-x
doi:
Substances chimiques
Apoproteins
0
Carbon Isotopes
0
DNA-Binding Proteins
0
Nitrogen Isotopes
0
Nitrogen-15
0
Protons
0
TARDBP protein, human
0
Carbon-13
FDJ0A8596D
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Pagination
163-167Références
Bahrami A, Assadi AH, Markley JL, Eghbalnia HR (2009) Probabilistic interaction network of evidence algorithm and its application to complete labeling of peak lists from protein NMR spectroscopy. PLoS Comput Biol. https://doi.org/10.1371/journal.pcbi.1000307
Buratti E, Baralle FE (2008) Multiple roles of TDP-43 in gene expression, splicing regulation, and human disease. Front Biosci 13:867–878. https://doi.org/10.2741/2727
doi: 10.2741/2727
Chiang CH, Grauffel C, Wu LS, Kuo PH, Doudeva LG, Lim C, Shen CK, Yuan HS (2016) Structural analysis of disease-related TDP-43 D169G mutation: linking enhanced stability and caspase cleavage efficiency to protein accumulation. Sci Rep. https://doi.org/10.1038/srep21581
Delaglio F, Grzesiek S, Vuister GW, Zhu G, Pfeifer J, Bax A (1995) NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J Biomol NMR 6(3):277–293. https://doi.org/10.1007/BF00197809
doi: 10.1007/BF00197809
Elden AC, Kim HJ, Hart MP, Alice S, Chen-Plotkin BS, Johnson X, Fang M, Armakola et al (2010) Ataxin-2 intermediate-length polyglutamine expansions are associated with increased risk for ALS. Nature 466(7310):1069–1075. https://doi.org/10.1038/nature09320
doi: 10.1038/nature09320
Ishiguro A, Kimura N, Watanabe Y, Watanabe S, Ishihama A (2016) TDP- 43 binds and transports G-quadruplex-containing MRNAs into neurites for local translation. Genes Cells 21(5):466–481. https://doi.org/10.1111/gtc.12352
doi: 10.1111/gtc.12352
Jiang L, Lei J, Zhao XF, Yin WT, He H, Yang MX, Che, Hong Yu Hu (2016) Two mutations G335D and Q343R within the amyloidogenic core region of TDP-43 influence its aggregation and inclusion formation. Sci Rep. https://doi.org/10.1038/srep23928
Josephs KA (2010) Dementia and the TAR DNA binding protein 43. Clin Pharmacol Ther. https://doi.org/10.1038/clpt.2010.112
Kansal K, Irwin D, Pletnikova O, Trojanowski J, Rabins P, Troncoso J, Grossman M, Onyike C (2015) Dementia phenotypes associated with TDP43 versus mixed TDP43/alzheimer pathology. Int Psychogeriatr 27:S116–S117. https://doi.org/10.1017/S1041610215002161
Kuo PH, Doudeva LG, Wang YT, Shen CK, Yuan HS (2009) Structural insights into TDP-43 in nucleic-acid binding and domain interactions. Nucleic Acids Res 37(6):1799–1808. https://doi.org/10.1093/nar/gkp013
doi: 10.1093/nar/gkp013
Kuo P, Chiang CH, Wang YT, Doudeva LG, Yuan HS (2014) The crystal structure of TDP-43 RRM1-DNA complex reveals the specific recognition for UG- and TG-rich nucleic acids. Nucleic Acids Res 42(7):4712–4722. https://doi.org/10.1093/nar/gkt1407
doi: 10.1093/nar/gkt1407
Lee W, Tonelli M, Markley JL (2015) NMRFAM-SPARKY: enhanced software for biomolecular NMR spectroscopy. Bioinformatics 31(8):1325–1327. https://doi.org/10.1093/bioinformatics/btu830
doi: 10.1093/bioinformatics/btu830
Lukavsky PJ, Daujotyte D, Tollervey JR, Ule J, Stuani C, Buratti E, Baralle FE, Fred F, Damberger, Frédéric HT, Allain (2013) Molecular basis of UG- rich RNA recognition by the human splicing factor TDP-43. Nat Struct Mol Biol 20(12):1443–1449. https://doi.org/10.1038/nsmb.2698
doi: 10.1038/nsmb.2698
Mackenzie IR, Rademakers R (2008) The role of transactive response DNA-binding protein-43 in amyotrophic lateral sclerosis and frontotemporal dementia. Curr Opin Neurol. https://doi.org/10.1097/WCO.0b013e3283168d1d
Mompean M, Romano V, Pantoja-Uceda D, Stuani C, Baralle FE, Buratti E, Douglas VL (2016) The TDP-43 N-terminal domain structure at high resolution. FEBS J. https://doi.org/10.1111/febs.13651
Ou SH, Wu F, Harrich D, García-Martínez LF, Gaynor RB (1995) Cloning and characterization of a novel cellular protein, TDP-43, that binds to human immunodeficiency virus type 1 TAR DNA sequence motifs. J Virol 69(6):3584–3596
Shen Y, Bax A (2014) Protein backbone and sidechain torsion angles predicted from NMR chemical shifts using artificial neural networks. J Biomol NMR 56(3):227–241