Suppression of the gut microbiome ameliorates age-related arterial dysfunction and oxidative stress in mice.
Aging
/ pathology
Animals
Anti-Bacterial Agents
/ pharmacology
Carotid Arteries
/ growth & development
Endothelium, Vascular
/ metabolism
Gastrointestinal Microbiome
/ drug effects
Male
Methylamines
/ blood
Mice
Mice, Inbred C57BL
Oxidative Stress
/ drug effects
Vascular Stiffness
/ drug effects
Vasodilation
/ drug effects
Ageing
arterial stiffness
endothelial function
gut dysbiosis
inflammation
Journal
The Journal of physiology
ISSN: 1469-7793
Titre abrégé: J Physiol
Pays: England
ID NLM: 0266262
Informations de publication
Date de publication:
05 2019
05 2019
Historique:
received:
17
10
2018
accepted:
23
01
2019
pubmed:
5
2
2019
medline:
15
7
2020
entrez:
5
2
2019
Statut:
ppublish
Résumé
Age-related arterial dysfunction, characterized by oxidative stress- and inflammation-mediated endothelial dysfunction and arterial stiffening, is the primary risk factor for cardiovascular diseases. To investigate whether age-related changes in the gut microbiome may mediate arterial dysfunction, we suppressed gut microbiota in young and old mice with a cocktail of broad-spectrum, poorly-absorbed antibiotics in drinking water for 3-4 weeks. In old mice, antibiotic treatment reversed endothelial dysfunction and arterial stiffening and attenuated vascular oxidative stress and inflammation. To provide insight into age-related changes in gut microbiota that may underlie these observations, we show that ageing altered the abundance of microbial taxa associated with gut dysbiosis and increased plasma levels of the adverse gut-derived metabolite trimethylamine N-oxide. The results of the present study provide the first proof-of-concept evidence that the gut microbiome is an important mediator of age-related arterial dysfunction and therefore may be a promising therapeutic target for preserving arterial function with ageing, thereby reducing the risk of cardiovascular diseases. Oxidative stress-mediated arterial dysfunction (e.g. endothelial dysfunction and large elastic artery stiffening) is the primary mechanism driving age-related cardiovascular diseases. Accumulating evidence suggests the gut microbiome modulates host physiology because dysregulation ('gut dysbiosis') has systemic consequences, including promotion of oxidative stress. The present study aimed to determine whether the gut microbiome modulates arterial function with ageing. We measured arterial function in young and older mice after 3-4 weeks of treatment with broad-spectrum, poorly-absorbed antibiotics to suppress the gut microbiome. To identify potential mechanistic links between the gut microbiome and age-related arterial dysfunction, we sequenced microbiota from young and older mice and measured plasma levels of the adverse gut-derived metabolite trimethylamine N-oxide (TMAO). In old mice, antibiotics reversed endothelial dysfunction [area-under-the-curve carotid artery dilatation to acetylcholine in young: 345 ± 16 AU vs. old control (OC): 220 ± 34 AU, P < 0.01; vs. old antibiotic-treated (OA): 334 ± 15 AU; P < 0.01 vs. OC] and arterial stiffening (aortic pulse wave velocity in young: 3.62 ± 0.15 m
Identifiants
pubmed: 30714619
doi: 10.1113/JP277336
pmc: PMC6487935
doi:
Substances chimiques
Anti-Bacterial Agents
0
Methylamines
0
trimethyloxamine
FLD0K1SJ1A
Types de publication
Journal Article
Research Support, N.I.H., Extramural
Langues
eng
Sous-ensembles de citation
IM
Pagination
2361-2378Subventions
Organisme : NHLBI NIH HHS
ID : R01 HL134887
Pays : United States
Organisme : NHLBI NIH HHS
ID : F32 HL140875
Pays : United States
Organisme : NIA NIH HHS
ID : F31 AG047784
Pays : United States
Organisme : NHLBI NIH HHS
ID : R01 HL107120
Pays : United States
Organisme : NHLBI NIH HHS
ID : T32 HL007822
Pays : United States
Commentaires et corrections
Type : CommentIn
Informations de copyright
© 2019 The Authors. The Journal of Physiology © 2019 The Physiological Society.
Références
Gut. 2001 Feb;48(2):198-205
pubmed: 11156640
Circulation. 2003 Jan 7;107(1):139-46
pubmed: 12515756
Circulation. 2003 Jan 28;107(3):490-7
pubmed: 12551876
N Engl J Med. 1960 Feb 25;262:380-5
pubmed: 14412744
Cell. 2004 Jul 23;118(2):229-41
pubmed: 15260992
Arterioscler Thromb Vasc Biol. 2005 May;25(5):932-43
pubmed: 15731494
Appl Environ Microbiol. 2005 Dec;71(12):8228-35
pubmed: 16332807
Appl Environ Microbiol. 2006 Feb;72(2):1027-33
pubmed: 16461645
Metabolism. 1992 Feb;41(2):135-6
pubmed: 1736035
Am J Physiol Heart Circ Physiol. 2008 Oct;295(4):H1451-9
pubmed: 18660454
J Med Microbiol. 2008 Dec;57(Pt 12):1569-76
pubmed: 19018031
BMC Microbiol. 2009 Jun 09;9:123
pubmed: 19508720
Aging Cell. 2010 Jun;9(3):304-12
pubmed: 20121721
Nat Methods. 2010 May;7(5):335-6
pubmed: 20383131
Proc Natl Acad Sci U S A. 2011 Mar 15;108 Suppl 1:4516-22
pubmed: 20534432
Proc Natl Acad Sci U S A. 2011 Mar 15;108 Suppl 1:4586-91
pubmed: 20571116
J Physiol. 2010 Oct 15;588(Pt 20):3971-82
pubmed: 20807791
Nat Methods. 2010 Oct;7(10):813-9
pubmed: 20818378
Scand J Infect Dis. 2011 May;43(5):386-8
pubmed: 21198337
Clin Sci (Lond). 2011 May;120(9):357-75
pubmed: 21244363
Aging Cell. 2011 Jun;10(3):429-37
pubmed: 21276184
PLoS One. 2011 Mar 21;6(3):e17996
pubmed: 21445311
Pac Symp Biocomput. 2012;:247-58
pubmed: 22174280
Nat Rev Gastroenterol Hepatol. 2012 Feb 21;9(4):219-30
pubmed: 22349170
Cell. 2012 Mar 16;148(6):1258-70
pubmed: 22424233
Exp Gerontol. 2012 Aug;47(8):588-94
pubmed: 22588062
Front Physiol. 2012 May 28;3:132
pubmed: 22783194
Nature. 2012 Aug 9;488(7410):178-84
pubmed: 22797518
Diabetologia. 2012 Oct;55(10):2823-2834
pubmed: 22828956
Clin Hemorheol Microcirc. 2013;53(1-2):155-69
pubmed: 22975936
Exp Gerontol. 2013 Feb;48(2):269-76
pubmed: 23142245
Proc Natl Acad Sci U S A. 2012 Dec 26;109(52):21307-12
pubmed: 23151509
Nat Methods. 2013 Jan;10(1):57-9
pubmed: 23202435
Cell Metab. 2013 Jan 8;17(1):49-60
pubmed: 23312283
Nat Med. 2013 May;19(5):576-85
pubmed: 23563705
Mech Ageing Dev. 2013 Jul-Aug;134(7-8):314-20
pubmed: 23612189
N Engl J Med. 2013 Apr 25;368(17):1575-84
pubmed: 23614584
J Nutr. 2013 Oct;143(10):1679-86
pubmed: 23966330
Anal Biochem. 2014 Jun 15;455:35-40
pubmed: 24704102
Microbiome. 2014 Dec 05;2(1):50
pubmed: 25520805
J Biol Chem. 2015 Feb 27;290(9):5647-60
pubmed: 25550161
Microb Ecol Health Dis. 2015 May 29;26:27663
pubmed: 26028277
J Physiol. 2015 Jun 15;593(12):2547-9
pubmed: 26095019
Nutr Res. 2015 Oct;35(10):858-864
pubmed: 26265295
Obesity (Silver Spring). 2015 Dec;23(12):2357-63
pubmed: 26465927
Cell. 2015 Dec 17;163(7):1585-95
pubmed: 26687352
Microb Pathog. 2017 May;106:171-181
pubmed: 26875998
J Am Heart Assoc. 2016 Feb 22;5(2):
pubmed: 26903003
Database (Oxford). 2016 Mar 28;2016:null
pubmed: 27022159
Nat Methods. 2016 Jul;13(7):581-3
pubmed: 27214047
Mucosal Immunol. 2017 Jan;10(1):18-26
pubmed: 27554295
J Am Heart Assoc. 2016 Aug 30;5(9):
pubmed: 27577581
Nat Commun. 2016 Sep 02;7:12565
pubmed: 27586459
PeerJ. 2016 Oct 18;4:e2584
pubmed: 27781170
Circulation. 2017 Mar 7;135(10):e146-e603
pubmed: 28122885
Brain Behav Immun. 2017 Oct;65:20-32
pubmed: 28179108
mSystems. 2017 Mar 7;2(2):
pubmed: 28289731
Gut. 2018 Feb;67(2):271-283
pubmed: 28377388
Cell Host Microbe. 2017 Apr 12;21(4):455-466.e4
pubmed: 28407483
Front Physiol. 2017 May 30;8:350
pubmed: 28611682
EBioMedicine. 2017 Oct;24:116-126
pubmed: 28928014
J Appl Physiol (1985). 2018 May 1;124(5):1194-1202
pubmed: 29074712
Front Immunol. 2017 Nov 02;8:1385
pubmed: 29163474
Am J Physiol Endocrinol Metab. 2018 May 1;314(5):E468-E477
pubmed: 29351482
mSystems. 2018 Apr 17;3(3):null
pubmed: 29719869
Sci Rep. 2018 Jul 17;8(1):10762
pubmed: 30018370
Nat Methods. 2018 Oct;15(10):796-798
pubmed: 30275573
Mol Cell Biochem. 1998 Apr;181(1-2):157-61
pubmed: 9562252