Mucosal cell populations may contribute to peripheral immune abnormalities in HIV-infected subjects introducing cART with moderate immune-suppression.
Adult
Anti-HIV Agents
/ pharmacology
Drug Interactions
Feces
/ microbiology
Female
Gastrointestinal Tract
/ drug effects
HIV Infections
/ drug therapy
Humans
Immune Tolerance
Immunity, Mucosal
/ drug effects
Male
Microbiota
/ drug effects
Middle Aged
Mucous Membrane
/ cytology
T-Lymphocytes
/ drug effects
Journal
PloS one
ISSN: 1932-6203
Titre abrégé: PLoS One
Pays: United States
ID NLM: 101285081
Informations de publication
Date de publication:
2019
2019
Historique:
received:
01
12
2018
accepted:
25
01
2019
entrez:
15
2
2019
pubmed:
15
2
2019
medline:
8
11
2019
Statut:
epublish
Résumé
HIV infection causes the progressive depletion of CD4+ T-lymphocytes and profound modifications of T-cell homeostasis, which persist despite virologically-suppressive treatment and have been linked to a worse clinical outcome. Enduring alterations of the gastrointestinal tract may represent the underlying pathogenic mechanisms of these phenomena. Twenty-six HIV-infected subjects were assessed over a 12-month period following the introduction of antiretroviral therapy. 18 uninfected individuals were enrolled as controls. Parameters of peripheral T-cell homeostasis (activation, maturation), gastrointestinal function (microbial translocation, gut inflammation, fecal microbiota composition) and mucosal immunity (CD4+CCR6+CD161+, CD4+CCR9+α4β7+, stem cell memory CD4+/CD8+ T-cells) were assessed. CD4+CCR6+CD161+ cells were depleted in HIV-infected untreated subjects and maintained significantly lower levels compared to controls, despite the introduction of effective antiviral treatment. The frequency of gut-homing CD4+CCR9+α4β7+ cells was also impaired in untreated infection and correlated with the HIV RNA load and CD4+HLADR+CD38+; during therapy, we observed a contraction of this pool in the peripheral blood and the loss of its correlation with antigenic exposure/immune activation. A partial correction of the balance between stem cell memory pools and T-cell homeostasis was registered following treatment. In HIV-infected subjects with moderate immune-suppression, antiretroviral therapy has a marginal impact on mucosal immune populations which feature distinctive kinetics in the periphery, possibly reflecting their diverse recruitment from the blood to the mucosa. The persistent defects in mucosal immunity may fuel peripheral T-cell abnormalities through diverse mechanisms, including the production of IL-17/IL-22, cellular permissiveness to infection and regulation of T-lymphocyte maturation.
Identifiants
pubmed: 30763359
doi: 10.1371/journal.pone.0212075
pii: PONE-D-18-34413
pmc: PMC6375585
doi:
Substances chimiques
Anti-HIV Agents
0
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
e0212075Déclaration de conflit d'intérêts
The authors have declared that no competing interests exist.
Références
Nat Med. 2006 Dec;12(12):1365-71
pubmed: 17115046
J Virol. 2015 Aug;89(15):7829-40
pubmed: 25995260
J Clin Invest. 2013 Feb;123(2):594-9
pubmed: 23281401
J Clin Endocrinol Metab. 2008 Sep;93(9):3499-504
pubmed: 18593764
J Virol. 2014 Dec;88(23):13836-44
pubmed: 25253339
J Infect Dis. 2016 Oct 1;214 Suppl 2:S58-66
pubmed: 27625432
AIDS. 2016 Nov 28;30(18):2737-2751
pubmed: 27755100
Sci Transl Med. 2018 Jan 24;10(425):
pubmed: 29367348
Sci Transl Med. 2018 Oct 3;10(461):
pubmed: 30282696
J Acquir Immune Defic Syndr. 2003 Jun 1;33(2):125-33
pubmed: 12794543
PLoS Pathog. 2014 Jun 26;10(6):e1004198
pubmed: 24968145
PLoS One. 2016 Nov 29;11(11):e0166496
pubmed: 27898686
Aging Dis. 2012 Jun;3(3):280-90
pubmed: 22724086
Mucosal Immunol. 2015 Jan;8(1):127-40
pubmed: 24985081
J Clin Invest. 2012 Jan;122(1):62-9
pubmed: 22156200
AIDS. 2015 Jan 2;29(1):43-51
pubmed: 25387317
Mucosal Immunol. 2017 Jul;10(4):1082-1096
pubmed: 28051083
J Neurovirol. 2014 Oct;20(5):457-65
pubmed: 25056907
Immunol Rev. 2013 Jul;254(1):326-42
pubmed: 23772629
J Immunol. 2010 Feb 1;184(3):1604-16
pubmed: 20042588
J Acquir Immune Defic Syndr. 2016 Jul 1;72(3):259-65
pubmed: 27306505
AIDS. 2014 Jul 17;28(11):1690-2
pubmed: 24911351
J Immunol. 2013 Sep 1;191(5):2194-204
pubmed: 23918986
J Exp Med. 2004 Sep 20;200(6):749-59
pubmed: 15365096
Blood. 2008 Oct 1;112(7):2826-35
pubmed: 18664624
BMC Public Health. 2012 Mar 23;12:234
pubmed: 22439731
Nat Med. 2011 Sep 18;17(10):1290-7
pubmed: 21926977
Mucosal Immunol. 2008 Jan;1(1):23-30
pubmed: 19079157
AIDS. 2008 Nov 30;22(18):2409-18
pubmed: 19005264
J Acquir Immune Defic Syndr. 2014 Nov 1;67(3):227-35
pubmed: 25314246
AIDS Res Ther. 2016 Apr 11;13:19
pubmed: 27073405
J Infect Dis. 2003 May 15;187(10):1534-43
pubmed: 12721933
J Infect Dis. 2011 Feb 15;203(4):452-63
pubmed: 21220772
Mucosal Immunol. 2016 Sep;9(5):1137-50
pubmed: 26883727
Mediators Inflamm. 2017;2017:6825493
pubmed: 29209103
J Immunol. 2013 Sep 1;191(5):2164-73
pubmed: 23894197
J Exp Med. 2008 Aug 4;205(8):1903-16
pubmed: 18663128
AIDS. 2016 Apr 24;30(7):991-1003
pubmed: 27028142
Nat Immunol. 2007 Jun;8(6):639-46
pubmed: 17486092
AIDS. 2010 Apr 24;24(7):959-68
pubmed: 20177358
Curr HIV Res. 2011 Apr;9(3):148-53
pubmed: 21457131
J Acquir Immune Defic Syndr. 2013 May 1;63(1):e28-30
pubmed: 23574924
AIDS. 2007 Mar 12;21(5):565-74
pubmed: 17314518