Combined T1-mapping and tissue tracking analysis predicts severity of ischemic injury following acute STEMI-an Oxford Acute Myocardial Infarction (OxAMI) study.
Aged
Contrast Media
/ administration & dosage
Female
Humans
Image Interpretation, Computer-Assisted
Magnetic Resonance Imaging, Cine
Male
Middle Aged
Myocardium
/ pathology
Percutaneous Coronary Intervention
Predictive Value of Tests
Prospective Studies
ST Elevation Myocardial Infarction
/ diagnostic imaging
Severity of Illness Index
Time Factors
Treatment Outcome
Cardiac magnetic resonance
Myocardial infarction
Strain
Journal
The international journal of cardiovascular imaging
ISSN: 1875-8312
Titre abrégé: Int J Cardiovasc Imaging
Pays: United States
ID NLM: 100969716
Informations de publication
Date de publication:
Jul 2019
Jul 2019
Historique:
received:
09
11
2018
accepted:
18
01
2019
pubmed:
20
2
2019
medline:
23
7
2019
entrez:
20
2
2019
Statut:
ppublish
Résumé
Early risk stratification after ST-segment-elevation myocardial infarction (STEMI) is of major clinical importance. Strain quantifies myocardial deformation and can demonstrate abnormal global and segmental myocardial function in acute ischaemia. Native T1-mapping allows assessment of the severity of acute ischemic injury, however its clinical applicability early post MI is limited by the complex dynamic changes happening in the myocardium post MI. We aimed to explore relationship between T1-mapping and feature tracking imaging, to establish whether combined analysis of these parameters could predict recovery after STEMI. 96 STEMI patients (aged 60 ± 11) prospectively recruited in the Oxford Acute Myocardial Infarction (OxAMI) study underwent 3T-CMR scans acutely (within 53 ± 32 h from primary percutaneous coronary intervention) and at 6 months (6M). The imaging protocol included: cine, ShMOLLI T1-mapping and late gadolinium enhancement (LGE). Segments were divided in the infarct, adjacent and remote zones based on the presence of LGE. Peak circumferential (Ecc) and radial (Err) strain was assessed using cvi42 software. Acute segmental strain correlated with segmental T1-mapping values (T1 vs. Err - 0.75 ± 0.25, p < 0.01; T1 vs. Ecc 0.72 ± 0.32, p < 0.01) and with LGE segmental injury (LGE vs. Err - 0.56 ± 0.29, p < 0.01; LGE vs. Ecc 0.54 ± 0.35, p < 0.01). Moreover, acute segmental T1 and strain predicted segmental LGE transmurality on 6M scans (p < 0.001, r = 0.5). Multiple regression analysis confirmed combined analysis of global Ecc and T1-mapping was significantly better than either method alone in predicting final infarct size at 6M (r = 0.556 vs r = 0.473 for global T1 only and r = 0.476 for global Ecc only, p < 0.001). This novel CMR method combining T1-mapping and feature tracking analysis of acute CMR scans predicts LGE transmurality and infarct size at 6M following STEMI.
Identifiants
pubmed: 30778713
doi: 10.1007/s10554-019-01542-8
pii: 10.1007/s10554-019-01542-8
pmc: PMC6598944
doi:
Substances chimiques
Contrast Media
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
1297-1308Subventions
Organisme : British Heart Foundation
ID : FS/13/71/30378
Pays : United Kingdom
Organisme : British Heart Foundation
ID : intermediate fellowship
Pays : United Kingdom
Organisme : British Heart Foundation
ID : ch/16/1/32013
Pays : United Kingdom
Organisme : BHF Centre of Research Excellence, Oxford
ID : fellowship
Références
J Am Coll Cardiol. 2001 Aug;38(2):555-61
pubmed: 11499752
JACC Cardiovasc Imaging. 2010 Feb;3(2):144-51
pubmed: 20159640
J Am Coll Cardiol. 2010 Jun 1;55(22):2470-9
pubmed: 20510214
J Cardiovasc Magn Reson. 2010 Nov 19;12:69
pubmed: 21092095
J Vis Exp. 2011 Feb 12;(48):null
pubmed: 21372778
Circulation. 1990 Apr;81(4):1161-72
pubmed: 2138525
Circ Cardiovasc Imaging. 2011 May;4(3):228-36
pubmed: 21447711
JACC Cardiovasc Imaging. 2011 Jun;4(6):610-8
pubmed: 21679895
J Cardiovasc Magn Reson. 2011 Oct 12;13:58
pubmed: 21992220
J Am Coll Cardiol. 2012 Jan 10;59(2):153-63
pubmed: 22222080
J Cardiovasc Magn Reson. 2012 Feb 06;14:15
pubmed: 22309452
JACC Cardiovasc Imaging. 2012 Jun;5(6):596-603
pubmed: 22698528
J Cardiovasc Magn Reson. 2012 Jun 21;14:43
pubmed: 22721175
J Cardiovasc Magn Reson. 2013 Jan 20;15:13
pubmed: 23331520
J Cardiovasc Magn Reson. 2013 Jan 18;15:8
pubmed: 23331550
Radiology. 2013 Jun;267(3):701-8
pubmed: 23382292
Eur Heart J. 2013 Jul;34(26):1964-71
pubmed: 23644180
J Am Coll Cardiol. 2015 Feb 3;65(4):315-323
pubmed: 25460833
Int J Cardiol. 2015 Mar 15;183:162-70
pubmed: 25675901
Eur J Radiol. 2015 May;84(5):840-8
pubmed: 25743248
Heart Lung Circ. 2015 Sep;24(9):891-7
pubmed: 25846255
JACC Cardiovasc Imaging. 2015 Jul;8(7):779-89
pubmed: 26093923
Eur Heart J. 2016 Apr 1;37(13):1044-59
pubmed: 26261290
J Cardiovasc Magn Reson. 2015 Aug 12;17:73
pubmed: 26264813
JACC Cardiovasc Imaging. 2015 Sep;8(9):1019-1030
pubmed: 26298071
J Am Heart Assoc. 2016 Feb 23;5(2):
pubmed: 26908408
Hypertension. 2016 Aug;68(2):385-91
pubmed: 27354423
JACC Cardiovasc Imaging. 2017 Feb;10(2):130-139
pubmed: 27665165
JACC Cardiovasc Imaging. 2017 Sep;10(9):1000-1002
pubmed: 27771397
JACC Cardiovasc Imaging. 2017 Sep;10(9):989-999
pubmed: 27771398
Circ Cardiovasc Qual Outcomes. 2017 Jan;10(1):
pubmed: 28073848
Q J Exp Psychol (Hove). 2018 Jun;71(6):1270-1275
pubmed: 28590881
JACC Cardiovasc Imaging. 2018 Mar;11(3):411-419
pubmed: 28624398
Circ Cardiovasc Imaging. 2017 Jul;10(7):null
pubmed: 28674085
JACC Cardiovasc Imaging. 2018 Oct;11(10):1433-1444
pubmed: 29454776