Renal response to an oral protein load in patients with central diabetes insipidus before and after treatment with vasopressin.
Administration, Oral
Adult
Antidiuretic Agents
/ therapeutic use
Deamino Arginine Vasopressin
/ therapeutic use
Diabetes Insipidus
/ metabolism
Dietary Proteins
/ administration & dosage
Female
Follow-Up Studies
Glomerular Filtration Rate
/ drug effects
Humans
Kidney
/ drug effects
Male
Retrospective Studies
Sodium
/ urine
Treatment Outcome
Diabetes insipidus
Glomerular filtration rate
Inulin
Vasopressin
Journal
Journal of nephrology
ISSN: 1724-6059
Titre abrégé: J Nephrol
Pays: Italy
ID NLM: 9012268
Informations de publication
Date de publication:
Jun 2019
Jun 2019
Historique:
received:
05
10
2018
accepted:
18
12
2018
pubmed:
20
2
2019
medline:
15
8
2020
entrez:
20
2
2019
Statut:
ppublish
Résumé
Different factors have been hypothesized to play a role in the cascade of events associated with the protein-induced glomerular response. However, scant data are available on the possible functional effect of vasopressin (VP) on the glomerular filtration rate (GFR) in humans with central diabetes insipidus (CDI), which was the aim of the present study. Renal function was studied under fasting conditions (baseline) and after a meat meal in 16 patients with CDI before and after treatment with desmopressin (DDAVP) and in 16 control subjects. GFR was measured by the inulin method. At baseline, the GFR was lower in patients with CDI. Treatment with DDAVP resulted in an insignificant increase in GFR, which was not statistically different from untreated patients. After an acute oral protein load, the GFR increased, peaking at 45 min post meal in controls, and at 135 min post meal in treated and untreated CDI patients. After a meat meal, the peak GFR response is delayed in CDI patients suggesting that VP might indirectly affect tubule-glomerular feedback.
Identifiants
pubmed: 30778919
doi: 10.1007/s40620-018-00575-x
pii: 10.1007/s40620-018-00575-x
doi:
Substances chimiques
Antidiuretic Agents
0
Dietary Proteins
0
Sodium
9NEZ333N27
Deamino Arginine Vasopressin
ENR1LLB0FP
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
411-415Références
Bardoux P, Martin H, Ahloulax M, Schmitt F, Bouby N, Marcelle MT, Tan T, Bankir L (1999) Vasopressin contributes to hyperfiltration, albuminuria, and renal hypertrophy in diabetes mellitus: study in vasopressin-deficient Brattleboro rats. Proc Natl Acad Sci USA 96:10397–10402
doi: 10.1073/pnas.96.18.10397
pubmed: 10468619
Anastasio P, Viggiano D, Zacchia M, Altobelli C, Capasso G, De Santo NG (2017) Delay in renal hemodynamic response to a meat meal in severe obesity. Nephron 136:151–157
doi: 10.1159/000453283
pubmed: 28329736
Cachat F, Combescure C, Cauderay M, Girardin E, Chehade H (2015) A systematic review of glomerular hyperfiltration assessment and definition in the medical literature. Clin J Am Soc Nephrol 10:382–389
doi: 10.2215/CJN.03080314
pubmed: 25568216
pmcid: 4348676
Alvestrand A. Bergstrom J (1984) Glomerular hyperfiltration after protein ingestion, during glucagon infusion and insulin-dependent diabetes is induced by a liver hormone: deficient production of this hormone in hepatic failure causes hepato- renal syndrome. Lancet 195–197
Chan AYM, Cheng M-LL, Keil LC, Myera SBD (1988) Functional response of healthy and diseased glomeruli to large protein rich meal. J Clin Invest 81:245–254
doi: 10.1172/JCI113302
pubmed: 3275694
pmcid: 442500
Claris-Appiani AAssael BM, Tirelli AS, Marra G, Cavanna G (1988) Lack of glomerular hemodynamic stimulation after infusion of brached-chain amino acids. Kidney Int 33:91–94
doi: 10.1038/ki.1988.14
Hirschberg RR, Zipser RD, Slomwitz LA, Koppe JD (1988) Glucagon and prostaglandins are mediators of amino acid induced rise in renal hemodynamics. Kidney Int 33:1147–1155
doi: 10.1038/ki.1988.123
pubmed: 3404814
Rosemberg ME, Swanson JE, Thomas BL, Hostetter T (1987) Glomerular and hormonal responses to dietary protein intake in human renal disease. Am J Physiol 22:F1083–F1090
Vanrenterghem YFCH, Verbeckmoes RKA, Roels LM, Michielsen PJ (1988) Role of prostaglandins in protein-induced glomerular hyperfiltration in normal humans. Am J Physiol 23:F463–F469
Anastasio P, Cirillo M, Spitali L, Frangiosa A, Pollastro RM, De Santo NG (2001) Level of hydration and renal function in healthy humans. Kidney Int 60:748–756
doi: 10.1046/j.1523-1755.2001.060002748.x
pubmed: 11473658
Nigro M, Viggiano D, Ragone V, Trabace T, di Palma A, Rossini M, Capasso G, Gesualdo L, Gigliotti G (2018) A cross-sectional study on the relationship between hematological data and quantitative morphological indices from kidney biopsies in different glomerular diseases. BMC Nephrol 19:62
doi: 10.1186/s12882-018-0846-0
pubmed: 29540159
pmcid: 5853112
Bankir L, Bouby N (1991) Vasopressin and urinary concentration: additional risk factors in the progression of chronic renal failure. Am J of Kidney Dis 17:20–26
doi: 10.1016/S0272-6386(12)80346-5
Bankir L, Bouby N, Trinh-Trang-Tan MM (1989) Possible involvement of vasopressin and urine concentrating process in the progression of chronic renal failure. Kidney Int 36:S32–S37
Bankir L, Fisher C, Fischer S, Jukkala K, Specht HC, Kriz W (1988) Adaptation of the rat kidney to altered water intake and urine concentration. Pflugers Arch 412:42–53
doi: 10.1007/BF00583730
pubmed: 3174386
Kelly SJ, Delnomdedieu M, Oliverio MI, Williams LD, Saifer MG, Sherman MR, Coffman TM, Johnson GA, Hershfield MS (2001) Diabetes insipidus in uricase-deficient mice: a model for evaluating therapy with poly(ethylene glycol)-modified uricase. J Am Soc Nephrol 12:1001–1009
pubmed: 11316859
Viggiano D, Gigliotti G, Vallone G, Giammarino A, Nigro M, Capasso G (2018) Urate-lowering agents in asymptomatic hyperuricemia: role of urine sediment analysis and musculoskeletal ultrasound. Kidney Blood Press Res 43:606–615
doi: 10.1159/000489145
pubmed: 29689561
Gavrin LK, Denny RA, Saiah E (2012) Small molecules that target protein misfolding. J Med Chem 55:10823–10843
doi: 10.1021/jm301182j
pubmed: 23075044
Viggiano A, Viggiano D, Viggiano A, De Luca B (2003) Quantitative histochemical assay for superoxide dismutase in rat brain. J Histochem Cytochem 51:865–871
doi: 10.1177/002215540305100702
pubmed: 12810837
Everts HB, Jang H, Boston RC, Canolty NL (1996) A compartmental model predicts that dietary potassium affects lithium dynamics in rats. J Nutr 126:1445–1454
doi: 10.1093/jn/126.5.1445
pubmed: 8618142
Luisi R, Panza E, Barrese V, Iannotti FA, Viggiano D, Secondo A, Canzoniero LM, Martire M, Annunziato L, Taglialatela M (2009) Activation of pre-synaptic M-type K
doi: 10.1111/j.1471-4159.2009.05945.x
pubmed: 19187447
Sharma A, Mucino MJ, Ronco C (2014) Renal functional reserve and renal recovery after acute kidney injury. Nephron Clin Pract 127:94–100
doi: 10.1159/000363721
pubmed: 25343829
Bankir L, Roussel R, Bouby N (2015) Protein and diabetes—induced hyperfiltration: role of glucagon, vasopressin and urea. Am J Physiology- Renal Physiology 309:F2–F23
doi: 10.1152/ajprenal.00614.2014
Gambaro G, Croppi E, Coe FC et al (2016) Metabolic diagnosis and medical prevention of calcium nephrolithiasis and its systemic manifestations: a consensus statement. J Nephrol 29:715–734
doi: 10.1007/s40620-016-0329-y
pubmed: 27456839
pmcid: 5080344
Nigro M, De Sanctis C, Formisano P, Stanzione R, Forte M, Capasso G, Gigliotti G, Rubattu S, Viggiano D (2018) Cellular and subcellular localization of uncoupling protein 2 in the human kidney. J Mol Histol. https://doi.org/10.1007/s10735-018-9782-3
doi: 10.1007/s10735-018-9782-3
pubmed: 29936692
Caterino M, Zacchia M, Costanzo M, Bruno G, Arcaniolo D, Trepiccione F, Siciliano RA, Mazzeo MF, Ruoppolo M, Capasso G (2018) Urine proteomics revealed a significant correlation between urine-fibronectin abundance and estimated-gfr decline in patients with bardet-biedl syndrome. Kidney Blood Press Res 43:389–405
doi: 10.1159/000488096
pubmed: 29539623