Energy metabolism is co-determined by genetic variants in chronic lymphocytic leukemia and influences drug sensitivity.
Apoptosis
B-Lymphocytes
/ cytology
DNA Methylation
Energy Metabolism
Genetic Variation
Glycolysis
Humans
Immunoglobulin Heavy Chains
/ genetics
Immunoglobulin Variable Region
/ genetics
Leukemia, Lymphocytic, Chronic, B-Cell
/ drug therapy
Mutation
Oxidative Stress
Phenotype
Phosphorylation
Principal Component Analysis
Treatment Outcome
Journal
Haematologica
ISSN: 1592-8721
Titre abrégé: Haematologica
Pays: Italy
ID NLM: 0417435
Informations de publication
Date de publication:
09 2019
09 2019
Historique:
received:
30
07
2018
accepted:
14
02
2019
pubmed:
23
2
2019
medline:
29
7
2020
entrez:
23
2
2019
Statut:
ppublish
Résumé
Chronic lymphocytic leukemia cells have an altered energy metabolism compared to normal B cells. While there is a growing understanding of the molecular heterogeneity of the disease, the extent of metabolic heterogeneity and its relation to molecular heterogeneity has not been systematically studied. Here, we assessed 11 bioenergetic features, primarily reflecting cell oxidative phosphorylation and glycolytic activity, in leukemic cells from 140 chronic lymphocytic leukemia patients using metabolic flux analysis. We examined these bioenergetic features for relationships with molecular profiles (including genetic aberrations, transcriptome and methylome profiles) of the tumors, their
Identifiants
pubmed: 30792207
pii: haematol.2018.203067
doi: 10.3324/haematol.2018.203067
pmc: PMC6717593
doi:
Substances chimiques
Immunoglobulin Heavy Chains
0
Immunoglobulin Variable Region
0
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
1830-1840Informations de copyright
Copyright© 2019 Ferrata Storti Foundation.
Références
Blood. 2001 Jul 1;98(1):181-6
pubmed: 11418478
Br J Haematol. 2002 Feb;116(2):316-28
pubmed: 11841432
Curr Opin Immunol. 2004 Jun;16(3):374-81
pubmed: 15134788
J Clin Invest. 2005 Mar;115(3):755-64
pubmed: 15711642
Blood. 2006 Jun 1;107(11):4458-65
pubmed: 16449529
Cancer. 2006 Jul 1;107(1):175-83
pubmed: 16721817
Exp Mol Pathol. 2007 Dec;83(3):459-61
pubmed: 17931624
Leukemia. 2008 Mar;22(3):585-92
pubmed: 18079738
Cancer Res. 2008 Dec 15;68(24):10137-44
pubmed: 19074880
Nat Rev Cancer. 2010 Jan;10(1):37-50
pubmed: 19956173
Leukemia. 2010 Apr;24(4):788-97
pubmed: 20090781
Cell. 2011 Mar 4;144(5):646-74
pubmed: 21376230
J Proteome Res. 2011 Sep 2;10(9):4165-76
pubmed: 21744784
Blood. 2011 Oct 20;118(16):4313-20
pubmed: 21816833
Trends Cell Biol. 2012 Nov;22(11):557-66
pubmed: 22995730
Cancer Cell. 2012 Nov 13;22(5):585-600
pubmed: 23153533
Blood. 2013 Jan 10;121(2):260-9
pubmed: 23160465
Cell Stem Cell. 2013 Mar 7;12(3):329-41
pubmed: 23333149
Mol Cancer Ther. 2013 Nov;12(11):2581-90
pubmed: 23979920
Cell Metab. 2013 Nov 5;18(5):698-711
pubmed: 24206664
J Clin Oncol. 2014 Mar 20;32(9):897-904
pubmed: 24516016
Blood. 2014 Apr 24;123(17):2663-72
pubmed: 24553174
Cold Spring Harb Perspect Med. 2014 May 01;4(5):null
pubmed: 24789872
Leukemia. 2015 Apr;29(4):877-85
pubmed: 25287991
J Exp Clin Cancer Res. 2014 Dec 18;33:106
pubmed: 25519934
Cancer Biol Med. 2014 Dec;11(4):255-63
pubmed: 25610711
Cancer Res. 2015 Feb 15;75(4):619-23
pubmed: 25634216
Genes Chromosomes Cancer. 2015 Apr;54(4):222-34
pubmed: 25645730
Blood. 2015 May 28;125(22):3432-6
pubmed: 25778534
Cell Syst. 2015 Dec 23;1(6):417-425
pubmed: 26771021
Nat Genet. 2016 Mar;48(3):253-64
pubmed: 26780610
Nat Rev Cancer. 2016 Mar;16(3):145-62
pubmed: 26911189
Blood. 2016 Jul 7;128(1):82-92
pubmed: 27127301
Leukemia. 2017 Feb;31(2):470-478
pubmed: 27479178
Blood. 2017 Mar 16;129(11):1469-1479
pubmed: 28049639
J Clin Invest. 2018 Jan 2;128(1):427-445
pubmed: 29227286
Biochem J. 1988 May 1;251(3):677-83
pubmed: 2970843
Oncoimmunology. 2018 Mar 26;7(7):e1445454
pubmed: 29900057
Blood Cells. 1987;12(2):457-70
pubmed: 3620708
Cancer. 1987 Dec 1;60(11):2712-6
pubmed: 3677006
J Biol Chem. 1994 Sep 23;269(38):23757-63
pubmed: 8089148