PML nuclear body-residing proteins sequentially associate with HPV genome after infectious nuclear delivery.
Antigens, Nuclear
/ metabolism
Autoantigens
/ metabolism
Capsid Proteins
Cell Nucleus
Genome, Viral
Humans
Intranuclear Inclusion Bodies
Intranuclear Space
Nuclear Proteins
Papillomaviridae
/ genetics
Promyelocytic Leukemia Protein
/ metabolism
SUMO-1 Protein
/ metabolism
Transcription Factors
Tumor Suppressor Proteins
Virus Replication
Journal
PLoS pathogens
ISSN: 1553-7374
Titre abrégé: PLoS Pathog
Pays: United States
ID NLM: 101238921
Informations de publication
Date de publication:
02 2019
02 2019
Historique:
received:
15
08
2018
accepted:
18
01
2019
revised:
07
03
2019
pubmed:
26
2
2019
medline:
11
4
2019
entrez:
26
2
2019
Statut:
epublish
Résumé
Subnuclear promyelocytic leukemia (PML) nuclear bodies (NBs) are targeted by many DNA viruses after nuclear delivery. PML protein is essential for formation of PML NBs. Sp100 and Small Ubiquitin-Like Modifier (SUMO) are also permanently residing within PML NBs. Often, large DNA viruses disassemble and reorganize PML NBs to counteract their intrinsic antiviral activity and support establishment of infection. However, human papillomavirus (HPV) requires PML protein to retain incoming viral DNA in the nucleus for subsequent efficient transcription. In contrast, Sp100 was identified as a restriction factor for HPV. These findings suggested that PML NBs are important regulators of early stages of the HPV life cycle. Nuclear delivery of incoming HPV DNA requires mitosis. Viral particles are retained within membrane-bound transport vesicles throughout mitosis. The viral genome is released from transport vesicles by an unknown mechanism several hours after nuclear envelope reformation. The minor capsid protein L2 mediates intracellular transport by becoming transmembranous in the endocytic compartment. Herein, we tested our hypothesis that PML protein is recruited to incoming viral genome prior to egress from transport vesicles. High-resolution microscopy revealed that PML protein, SUMO-1, and Sp100 are recruited to incoming viral genomes, rather than viral genomes being targeted to preformed PML NBs. Differential immunofluorescent staining suggested that PML protein and SUMO-1 associated with transport vesicles containing viral particles prior to egress, implying that recruitment is likely mediated by L2 protein. In contrast, Sp100 recruitment to HPV-harboring PML NBs occurred after release of viral genomes from transport vesicles. The delayed recruitment of Sp100 is specific for HPV-associated PML NBs. These data suggest that the virus continuously resides within a protective environment until the transport vesicle breaks down in late G1 phase and imply that HPV might modulate PML NB assembly to achieve establishment of infection and the shift to viral maintenance.
Identifiants
pubmed: 30802273
doi: 10.1371/journal.ppat.1007590
pii: PPATHOGENS-D-18-01615
pmc: PMC6405170
doi:
Substances chimiques
Antigens, Nuclear
0
Autoantigens
0
Capsid Proteins
0
Nuclear Proteins
0
Promyelocytic Leukemia Protein
0
SUMO-1 Protein
0
Transcription Factors
0
Tumor Suppressor Proteins
0
SP100 protein, human
135844-47-2
PML protein, human
143220-95-5
Types de publication
Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
e1007590Subventions
Organisme : NIGMS NIH HHS
ID : P30 GM110703
Pays : United States
Organisme : NIAID NIH HHS
ID : R01 AI081809
Pays : United States
Organisme : NCI NIH HHS
ID : R01 CA211576
Pays : United States
Déclaration de conflit d'intérêts
The authors have declared that no competing interests exist.
Références
J Cell Biol. 1999 Oct 18;147(2):221-34
pubmed: 10525530
J Cell Sci. 1999 Dec;112 ( Pt 24):4581-8
pubmed: 10574707
Blood. 2000 May 1;95(9):2748-52
pubmed: 10779416
J Virol. 2001 Oct;75(19):9201-9
pubmed: 11533183
Virology. 2002 Mar 30;295(1):97-107
pubmed: 12033769
J Virol. 2003 Aug;77(16):8686-94
pubmed: 12885887
Virology. 2003 Sep 15;314(1):161-7
pubmed: 14517069
J Virol. 2004 Jan;78(2):751-7
pubmed: 14694107
Proc Natl Acad Sci U S A. 2004 Sep 28;101(39):14252-7
pubmed: 15383670
Nat Struct Mol Biol. 2005 Jan;12(1):67-74
pubmed: 15608651
J Virol. 2005 Mar;79(5):2839-46
pubmed: 15709003
Methods Mol Med. 2005;119:445-62
pubmed: 16350417
J Cell Sci. 2006 Mar 15;119(Pt 6):1034-42
pubmed: 16492707
J Virol. 2006 Jul;80(13):6691-6
pubmed: 16775357
Mol Cell. 2006 Nov 3;24(3):331-9
pubmed: 17081985
J Virol. 2007 Oct;81(20):10991-1004
pubmed: 17670833
J Virol. 2007 Oct;81(20):10970-80
pubmed: 17686860
Nat Rev Mol Cell Biol. 2007 Dec;8(12):1006-16
pubmed: 17928811
Curr Protoc Cell Biol. 2007 Dec;Chapter 26:Unit 26.1
pubmed: 18228512
Mol Biol Cell. 2008 Jul;19(7):3147-62
pubmed: 18480407
PLoS Pathog. 2009 Feb;5(2):e1000318
pubmed: 19247434
Nat Rev Cancer. 2010 Aug;10(8):550-60
pubmed: 20592731
Virology. 2010 Oct 25;406(2):181-8
pubmed: 20684966
J Virol. 2010 Nov;84(21):11585-9
pubmed: 20739540
Cell Microbiol. 2011 Jan;13(1):32-46
pubmed: 21166973
J Cell Sci. 2011 Jan 15;124(Pt 2):280-91
pubmed: 21172801
Nucleus. 2011 May-Jun;2(3):189-94
pubmed: 21818412
J Virol. 2011 Nov;85(22):11928-37
pubmed: 21880768
PLoS Pathog. 2011 Sep;7(9):e1002245
pubmed: 21949651
J Virol. 2012 Sep;86(18):9875-87
pubmed: 22761365
Virol J. 2012 Sep 28;9:222
pubmed: 23021128
J Virol. 2013 Jan;87(2):1270-3
pubmed: 23115288
J Virol. 2013 Jan;87(2):965-77
pubmed: 23135708
J Virol. 2013 Apr;87(7):3862-70
pubmed: 23345514
MBio. 2013 Nov 05;4(6):e00845-13
pubmed: 24194542
Cell Microbiol. 2014 Aug;16(8):1179-200
pubmed: 24444361
PLoS Pathog. 2014 May 29;10(5):e1004162
pubmed: 24874089
Virology. 2014 Jun;458-459:93-105
pubmed: 24928042
PLoS Pathog. 2015 Feb 18;11(2):e1004699
pubmed: 25693203
J Virol. 2015 Aug;89(15):7506-20
pubmed: 25972554
J Virol. 2015 Sep;89(17):8727-32
pubmed: 26063434
J Virol. 2015 Oct;89(20):10442-52
pubmed: 26246568
J Virol. 2016 Jun 10;90(13):5850-5854
pubmed: 27053550
Proc Natl Acad Sci U S A. 2016 May 31;113(22):6289-94
pubmed: 27190090
Cell Microbiol. 2017 May;19(5):
pubmed: 27860076
PLoS Pathog. 2017 May 2;13(5):e1006200
pubmed: 28463988
PLoS Pathog. 2017 May 2;13(5):e1006308
pubmed: 28464022
J Virol. 2017 May 31;:
pubmed: 28566382
PLoS Pathog. 2017 Oct 2;13(10):e1006660
pubmed: 28968443
PLoS Pathog. 2018 Jan 8;14(1):e1006769
pubmed: 29309427
J Cell Biol. 2018 Oct 1;217(10):3545-3559
pubmed: 30006461
Oncogene. 2018 Nov;37(48):6275-6284
pubmed: 30018400
Cell. 2018 Sep 6;174(6):1465-1476.e13
pubmed: 30122350
J Gen Virol. 1995 Nov;76 ( Pt 11):2661-7
pubmed: 7595373
Scand J Immunol. 1995 Aug;42(2):257-68
pubmed: 7631159
EMBO J. 1994 Nov 1;13(21):5062-9
pubmed: 7957072
J Gen Virol. 1994 Dec;75 ( Pt 12):3375-83
pubmed: 7996132
J Cell Biol. 1996 Aug;134(4):815-26
pubmed: 8769408
J Virol. 1998 Jan;72(1):142-50
pubmed: 9420209
J Virol. 1998 Aug;72(8):6581-91
pubmed: 9658103
J Biol Chem. 1998 Oct 9;273(41):26675-82
pubmed: 9756909