Gain-of-function mutation of microRNA-140 in human skeletal dysplasia.
Journal
Nature medicine
ISSN: 1546-170X
Titre abrégé: Nat Med
Pays: United States
ID NLM: 9502015
Informations de publication
Date de publication:
04 2019
04 2019
Historique:
received:
04
12
2017
accepted:
11
01
2019
pubmed:
26
2
2019
medline:
11
5
2019
entrez:
27
2
2019
Statut:
ppublish
Résumé
MicroRNAs (miRNAs) are post-transcriptional regulators of gene expression. Heterozygous loss-of-function point mutations of miRNA genes are associated with several human congenital disorders
Identifiants
pubmed: 30804514
doi: 10.1038/s41591-019-0353-2
pii: 10.1038/s41591-019-0353-2
pmc: PMC6622181
mid: NIHMS1518562
doi:
Substances chimiques
MicroRNAs
0
Mirn140 microRNA, human
0
Types de publication
Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
583-590Subventions
Organisme : NIH HHS
ID : R01-AR056645
Pays : United States
Organisme : NCI NIH HHS
ID : P30 CA014051
Pays : United States
Organisme : NCI NIH HHS
ID : R01 CA133404
Pays : United States
Organisme : NIGMS NIH HHS
ID : R01 GM034277
Pays : United States
Organisme : NIAMS NIH HHS
ID : P30 AR066261
Pays : United States
Organisme : NIAMS NIH HHS
ID : R01 AR056645
Pays : United States
Organisme : NIH HHS
ID : P30 AR066261
Pays : United States
Organisme : NCI NIH HHS
ID : P01 CA042063
Pays : United States
Références
Mencia, A. et al. Mutations in the seed region of human miR-96 are responsible for nonsyndromic progressive hearing loss. Nat. Genet. 41, 609–613 (2009).
doi: 10.1038/ng.355
Solda, G. et al. A novel mutation within the MIR96 gene causes non-syndromic inherited hearing loss in an Italian family by altering pre-miRNA processing. Hum. Mol. Genet. 21, 577–585 (2012).
doi: 10.1093/hmg/ddr493
Hughes, A. E. et al. Mutation altering the miR-184 seed region causes familial keratoconus with cataract. Am. J. Hum. Genet. 89, 628–633 (2011).
doi: 10.1016/j.ajhg.2011.09.014
Iliff, B. W., Riazuddin, S. A. & Gottsch, J. D. A single-base substitution in the seed region of miR-184 causes EDICT syndrome. Invest. Ophthalmol. Vis. Sci. 53, 348–353 (2012).
doi: 10.1167/iovs.11-8783
Lechner, J. et al. Mutational analysis of MIR184 in sporadic keratoconus and myopia. Invest. Ophthalmol. Vis. Sci. 54, 5266–5272 (2013).
doi: 10.1167/iovs.13-12035
Nakamura, Y., Inloes, J. B., Katagiri, T. & Kobayashi, T. Chondrocyte-specific microRNA-140 regulates endochondral bone development and targets Dnpep to modulate bone morphogenetic protein signaling. Mol. Cell. Biol. 31, 3019–3028 (2011).
doi: 10.1128/MCB.05178-11
Chen, K. & Rajewsky, N. The evolution of gene regulation by transcription factors and microRNAs. Nat. Rev. Genet. 8, 93–103 (2007).
doi: 10.1038/nrg1990
Berezikov, E. Evolution of microRNA diversity and regulation in animals. Nat. Rev. Genet. 12, 846–860 (2011).
doi: 10.1038/nrg3079
Bonafe, L. et al. Nosology and classification of genetic skeletal disorders: 2015 revision. Am. J. Med. Genet. A 167A, 2869–2892 (2015).
doi: 10.1002/ajmg.a.37365
Lek, M. et al. Analysis of protein-coding genetic variation in 60,706 humans. Nature 536, 285–291 (2016).
doi: 10.1038/nature19057
Suzuki, H. I., Young, R. A. & Sharp, P. A. Super-enhancer-mediated RNA processing revealed by integrative microrna network analysis. Cell 168, 1000–1014 e1015 (2017).
doi: 10.1016/j.cell.2017.02.015
Whyte, W. A. et al. Master transcription factors and mediator establish super-enhancers at key cell identity genes. Cell 153, 307–319 (2013).
doi: 10.1016/j.cell.2013.03.035
Hnisz, D. et al. Super-enhancers in the control of cell identity and disease. Cell 155, 934–947 (2013).
doi: 10.1016/j.cell.2013.09.053
Wienholds, E. et al. MicroRNA expression in zebrafish embryonic development. Science 309, 310–311 (2005).
doi: 10.1126/science.1114519
Tuddenham, L. et al. The cartilage specific microRNA-140 targets histone deacetylase 4 in mouse cells. FEBS Lett. 580, 4214–4217 (2006).
doi: 10.1016/j.febslet.2006.06.080
Miyaki, S. et al. MicroRNA-140 plays dual roles in both cartilage development and homeostasis. Genes Dev. 24, 1173–1185 (2010).
doi: 10.1101/gad.1915510
Papaioannou, G. et al. MicroRNA-140 provides robustness to the regulation of hypertrophic chondrocyte differentiation by the PTHrP-HDAC4 pathway. J. Bone Miner. Res. 30, 1044–1052 (2015).
doi: 10.1002/jbmr.2438
Ran, F. A. et al. Genome engineering using the CRISPR–Cas9 system. Nat. Protoc. 8, 2281–2308 (2013).
doi: 10.1038/nprot.2013.143
Park, J. E. et al. Dicer recognizes the 5′ end of RNA for efficient and accurate processing. Nature 475, 201–205 (2011).
doi: 10.1038/nature10198
Suzuki, H. I. et al. Small-RNA asymmetry is directly driven by mammalian Argonautes. Nat. Struct. Mol. Biol. 22, 512–521 (2015).
doi: 10.1038/nsmb.3050
Agarwal, V., Bell, G. W., Nam, J. W. & Bartel, D. P. Predicting effective microRNA target sites in mammalian mRNAs. eLife 4, e05005 (2015).
doi: 10.7554/eLife.05005
Zhang, J. et al. Loss of lysyl oxidase-like 3 causes cleft palate and spinal deformity in mice. Hum. Mol. Genet. 24, 6174–6185 (2015).
doi: 10.1093/hmg/ddv333
Tijchon, E. et al. Targeted deletion of btg1 and btg2 results in homeotic transformation of the axial skeleton. PLoS ONE 10, e0131481 (2015).
doi: 10.1371/journal.pone.0131481
Napierala, D. et al. Uncoupling of chondrocyte differentiation and perichondrial mineralization underlies the skeletal dysplasia in tricho-rhino-phalangeal syndrome. Hum. Mol. Genet. 17, 2244–2254 (2008).
doi: 10.1093/hmg/ddn125
Subramanian, A. et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl Acad. Sci. USA 102, 15545–15550 (2005).
doi: 10.1073/pnas.0506580102
Merico, D., Isserlin, R., Stueker, O., Emili, A. & Bader, G. D. Enrichment map: a network-based method for gene-set enrichment visualization and interpretation. PLoS ONE 5, e13984 (2010).
doi: 10.1371/journal.pone.0013984
Wan, C. et al. Role of HIF-1α in skeletal development. Ann. N. Y. Acad. Sci. 1192, 322–326 (2010).
doi: 10.1111/j.1749-6632.2009.05238.x
Grimson, A. et al. MicroRNA targeting specificity in mammals: determinants beyond seed pairing. Mol. Cell 27, 91–105 (2007).
doi: 10.1016/j.molcel.2007.06.017
van Kouwenhove, M., Kedde, M. & Agami, R. MicroRNA regulation by RNA-binding proteins and its implications for cancer. Nat. Rev. Cancer 11, 644–656 (2011).
doi: 10.1038/nrc3107
Ray, D. et al. A compendium of RNA-binding motifs for decoding gene regulation. Nature 499, 172–177 (2013).
doi: 10.1038/nature12311
Wei, W. J. et al. YB-1 binds to CAUC motifs and stimulates exon inclusion by enhancing the recruitment of U2AF to weak polypyrimidine tracts. Nucleic Acids Res. 40, 8622–8636 (2012).
doi: 10.1093/nar/gks579
Wu, S. L. et al. Genome-wide analysis of YB-1-RNA interactions reveals a novel role of YB-1 in miRNA processing in glioblastoma multiforme. Nucleic Acids Res. 43, 8516–8528 (2015).
doi: 10.1093/nar/gkv779
Lyabin, D. N., Eliseeva, I. A. & Ovchinnikov, L. P. YB-1 protein: functions and regulation. Wiley Interdiscip. Rev. RNA 5, 95–110 (2014).
doi: 10.1002/wrna.1200
Goodarzi, H. et al. Endogenous tRNA-derived fragments suppress breast cancer progression via ybx1 displacement. Cell 161, 790–802 (2015).
doi: 10.1016/j.cell.2015.02.053
Van Nostrand, E. L. et al. Robust transcriptome-wide discovery of RNA-binding protein binding sites with enhanced CLIP (eCLIP). Nat. Methods 13, 508–514 (2016).
doi: 10.1038/nmeth.3810
Van Nostrand, E. L. et al. Erratum to: robust, cost-effective profiling of RNA binding protein targets with single-end enhanced crosslinking and immunoprecipitation (seCLIP). Methods Mol. Biol. 1648, E1 (2017).
doi: 10.1007/978-1-4939-7204-3_19
de Pontual, L. et al. Germline deletion of the miR-17 approximately 92 cluster causes skeletal and growth defects in humans. Nat. Genet. 43, 1026–1030 (2011).
doi: 10.1038/ng.915
Henrion-Caude, A., Girard, M. & Amiel, J. MicroRNAs in genetic disease: rethinking the dosage. Curr. Gene. Ther. 12, 292–300 (2012).
doi: 10.2174/156652312802083602
Lewis, M. A. et al. An ENU-induced mutation of miR-96 associated with progressive hearing loss in mice. Nat. Genet. 41, 614–618 (2009).
doi: 10.1038/ng.369
Suzuki, H. I., Spengler, R. M., Grigelioniene, G., Kobayashi, T. & Sharp, P. A. Deconvolution of seed and RNA-binding protein crosstalk in RNAi-based functional genomics. Nat. Genet. 50, 657–661 (2018).
doi: 10.1038/s41588-018-0104-1
Kaminsky, E. B. et al. An evidence-based approach to establish the functional and clinical significance of copy number variants in intellectual and developmental disabilities. Genet. Med. 13, 777–784 (2011).
doi: 10.1097/GIM.0b013e31822c79f9
Niklasson, A. & Albertsson-Wikland, K. Continuous growth reference from 24th week of gestation to 24 months by gender. BMC Pediatr. 8, 8 (2008).
doi: 10.1186/1471-2431-8-8
Kvarnung, M. et al. Genomic screening in rare disorders: new mutations and phenotypes, highlighting ALG14 as a novel cause of severe intellectual disability. Clin. Genet. 94, 528–537 (2018).
doi: 10.1111/cge.13448
Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25, 1754–1760 (2009).
doi: 10.1093/bioinformatics/btp324
McKenna, A. et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 20, 1297–1303 (2010).
doi: 10.1101/gr.107524.110
Okonechnikov, K., Conesa, A. & Garcia-Alcalde, F. Qualimap 2: advanced multi-sample quality control for high-throughput sequencing data. Bioinformatics 32, 292–294 (2016).
pubmed: 26428292
Lindstrand, A. et al. Improved structural characterization of chromosomal breakpoints using high resolution custom array-CGH. Clin. Genet. 77, 552–562 (2010).
doi: 10.1111/j.1399-0004.2009.01341.x
Yang, H., Wang, H. & Jaenisch, R. Generating genetically modified mice using CRISPR/Cas-mediated genome engineering. Nat. Protoc. 9, 1956–1968 (2014).
doi: 10.1038/nprot.2014.134
Wein, M. N. et al. SIKs control osteocyte responses to parathyroid hormone. Nat. Commun. 7, 13176 (2016).
doi: 10.1038/ncomms13176
Eyre, D. Collagen cross-linking amino acids. Methods Enzymol. 144, 115–139 (1987).
doi: 10.1016/0076-6879(87)44176-1
Ohba, S., He, X., Hojo, H. & McMahon, A. P. Distinct transcriptional programs underlie Sox9 regulation of the mammalian chondrocyte. Cell Rep. 12, 229–243 (2015).
doi: 10.1016/j.celrep.2015.06.013
Langmead, B., Trapnell, C., Pop, M. & Salzberg, S. L. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome. Biol. 10, R25 (2009).
doi: 10.1186/gb-2009-10-3-r25
Zhang, Y. et al. Model-based analysis of ChIP-Seq (MACS). Genome. Biol. 9, R137 (2008).
doi: 10.1186/gb-2008-9-9-r137
Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, (15–21 (2013).
Trapnell, C. et al. Transcript assembly and quantification by RNA-seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat. Biotechnol. 28, 511–515 (2010).
doi: 10.1038/nbt.1621
Grant, G. R. et al. Comparative analysis of RNA-Seq alignment algorithms and the RNA-Seq unified mapper (RUM). Bioinformatics 27, 2518–2528 (2011).
doi: 10.1093/bioinformatics/btr427
Robinson, M. D., McCarthy, D. J. & Smyth, G. K. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26, 139–140 (2010).
doi: 10.1093/bioinformatics/btp616
Zamudio, J. R., Kelly, T. J. & Sharp, P. A. Argonaute-bound small RNAs from promoter-proximal RNA polymerase II. Cell 156, 920–934 (2014).
doi: 10.1016/j.cell.2014.01.041
Paz, I. et al. RBPmap: a web server for mapping binding sites of RNA-binding proteins. Nucleic Acids Res. 42, W361–W367 (2014).
doi: 10.1093/nar/gku406
Heinz, S. et al. Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. Mol. Cell 38, 576–589 (2010).
doi: 10.1016/j.molcel.2010.05.004