Gain-of-function mutation of microRNA-140 in human skeletal dysplasia.


Journal

Nature medicine
ISSN: 1546-170X
Titre abrégé: Nat Med
Pays: United States
ID NLM: 9502015

Informations de publication

Date de publication:
04 2019
Historique:
received: 04 12 2017
accepted: 11 01 2019
pubmed: 26 2 2019
medline: 11 5 2019
entrez: 27 2 2019
Statut: ppublish

Résumé

MicroRNAs (miRNAs) are post-transcriptional regulators of gene expression. Heterozygous loss-of-function point mutations of miRNA genes are associated with several human congenital disorders

Identifiants

pubmed: 30804514
doi: 10.1038/s41591-019-0353-2
pii: 10.1038/s41591-019-0353-2
pmc: PMC6622181
mid: NIHMS1518562
doi:

Substances chimiques

MicroRNAs 0
Mirn140 microRNA, human 0

Types de publication

Journal Article Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

583-590

Subventions

Organisme : NIH HHS
ID : R01-AR056645
Pays : United States
Organisme : NCI NIH HHS
ID : P30 CA014051
Pays : United States
Organisme : NCI NIH HHS
ID : R01 CA133404
Pays : United States
Organisme : NIGMS NIH HHS
ID : R01 GM034277
Pays : United States
Organisme : NIAMS NIH HHS
ID : P30 AR066261
Pays : United States
Organisme : NIAMS NIH HHS
ID : R01 AR056645
Pays : United States
Organisme : NIH HHS
ID : P30 AR066261
Pays : United States
Organisme : NCI NIH HHS
ID : P01 CA042063
Pays : United States

Références

Mencia, A. et al. Mutations in the seed region of human miR-96 are responsible for nonsyndromic progressive hearing loss. Nat. Genet. 41, 609–613 (2009).
doi: 10.1038/ng.355
Solda, G. et al. A novel mutation within the MIR96 gene causes non-syndromic inherited hearing loss in an Italian family by altering pre-miRNA processing. Hum. Mol. Genet. 21, 577–585 (2012).
doi: 10.1093/hmg/ddr493
Hughes, A. E. et al. Mutation altering the miR-184 seed region causes familial keratoconus with cataract. Am. J. Hum. Genet. 89, 628–633 (2011).
doi: 10.1016/j.ajhg.2011.09.014
Iliff, B. W., Riazuddin, S. A. & Gottsch, J. D. A single-base substitution in the seed region of miR-184 causes EDICT syndrome. Invest. Ophthalmol. Vis. Sci. 53, 348–353 (2012).
doi: 10.1167/iovs.11-8783
Lechner, J. et al. Mutational analysis of MIR184 in sporadic keratoconus and myopia. Invest. Ophthalmol. Vis. Sci. 54, 5266–5272 (2013).
doi: 10.1167/iovs.13-12035
Nakamura, Y., Inloes, J. B., Katagiri, T. & Kobayashi, T. Chondrocyte-specific microRNA-140 regulates endochondral bone development and targets Dnpep to modulate bone morphogenetic protein signaling. Mol. Cell. Biol. 31, 3019–3028 (2011).
doi: 10.1128/MCB.05178-11
Chen, K. & Rajewsky, N. The evolution of gene regulation by transcription factors and microRNAs. Nat. Rev. Genet. 8, 93–103 (2007).
doi: 10.1038/nrg1990
Berezikov, E. Evolution of microRNA diversity and regulation in animals. Nat. Rev. Genet. 12, 846–860 (2011).
doi: 10.1038/nrg3079
Bonafe, L. et al. Nosology and classification of genetic skeletal disorders: 2015 revision. Am. J. Med. Genet. A 167A, 2869–2892 (2015).
doi: 10.1002/ajmg.a.37365
Lek, M. et al. Analysis of protein-coding genetic variation in 60,706 humans. Nature 536, 285–291 (2016).
doi: 10.1038/nature19057
Suzuki, H. I., Young, R. A. & Sharp, P. A. Super-enhancer-mediated RNA processing revealed by integrative microrna network analysis. Cell 168, 1000–1014 e1015 (2017).
doi: 10.1016/j.cell.2017.02.015
Whyte, W. A. et al. Master transcription factors and mediator establish super-enhancers at key cell identity genes. Cell 153, 307–319 (2013).
doi: 10.1016/j.cell.2013.03.035
Hnisz, D. et al. Super-enhancers in the control of cell identity and disease. Cell 155, 934–947 (2013).
doi: 10.1016/j.cell.2013.09.053
Wienholds, E. et al. MicroRNA expression in zebrafish embryonic development. Science 309, 310–311 (2005).
doi: 10.1126/science.1114519
Tuddenham, L. et al. The cartilage specific microRNA-140 targets histone deacetylase 4 in mouse cells. FEBS Lett. 580, 4214–4217 (2006).
doi: 10.1016/j.febslet.2006.06.080
Miyaki, S. et al. MicroRNA-140 plays dual roles in both cartilage development and homeostasis. Genes Dev. 24, 1173–1185 (2010).
doi: 10.1101/gad.1915510
Papaioannou, G. et al. MicroRNA-140 provides robustness to the regulation of hypertrophic chondrocyte differentiation by the PTHrP-HDAC4 pathway. J. Bone Miner. Res. 30, 1044–1052 (2015).
doi: 10.1002/jbmr.2438
Ran, F. A. et al. Genome engineering using the CRISPR–Cas9 system. Nat. Protoc. 8, 2281–2308 (2013).
doi: 10.1038/nprot.2013.143
Park, J. E. et al. Dicer recognizes the 5′ end of RNA for efficient and accurate processing. Nature 475, 201–205 (2011).
doi: 10.1038/nature10198
Suzuki, H. I. et al. Small-RNA asymmetry is directly driven by mammalian Argonautes. Nat. Struct. Mol. Biol. 22, 512–521 (2015).
doi: 10.1038/nsmb.3050
Agarwal, V., Bell, G. W., Nam, J. W. & Bartel, D. P. Predicting effective microRNA target sites in mammalian mRNAs. eLife 4, e05005 (2015).
doi: 10.7554/eLife.05005
Zhang, J. et al. Loss of lysyl oxidase-like 3 causes cleft palate and spinal deformity in mice. Hum. Mol. Genet. 24, 6174–6185 (2015).
doi: 10.1093/hmg/ddv333
Tijchon, E. et al. Targeted deletion of btg1 and btg2 results in homeotic transformation of the axial skeleton. PLoS ONE 10, e0131481 (2015).
doi: 10.1371/journal.pone.0131481
Napierala, D. et al. Uncoupling of chondrocyte differentiation and perichondrial mineralization underlies the skeletal dysplasia in tricho-rhino-phalangeal syndrome. Hum. Mol. Genet. 17, 2244–2254 (2008).
doi: 10.1093/hmg/ddn125
Subramanian, A. et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl Acad. Sci. USA 102, 15545–15550 (2005).
doi: 10.1073/pnas.0506580102
Merico, D., Isserlin, R., Stueker, O., Emili, A. & Bader, G. D. Enrichment map: a network-based method for gene-set enrichment visualization and interpretation. PLoS ONE 5, e13984 (2010).
doi: 10.1371/journal.pone.0013984
Wan, C. et al. Role of HIF-1α in skeletal development. Ann. N. Y. Acad. Sci. 1192, 322–326 (2010).
doi: 10.1111/j.1749-6632.2009.05238.x
Grimson, A. et al. MicroRNA targeting specificity in mammals: determinants beyond seed pairing. Mol. Cell 27, 91–105 (2007).
doi: 10.1016/j.molcel.2007.06.017
van Kouwenhove, M., Kedde, M. & Agami, R. MicroRNA regulation by RNA-binding proteins and its implications for cancer. Nat. Rev. Cancer 11, 644–656 (2011).
doi: 10.1038/nrc3107
Ray, D. et al. A compendium of RNA-binding motifs for decoding gene regulation. Nature 499, 172–177 (2013).
doi: 10.1038/nature12311
Wei, W. J. et al. YB-1 binds to CAUC motifs and stimulates exon inclusion by enhancing the recruitment of U2AF to weak polypyrimidine tracts. Nucleic Acids Res. 40, 8622–8636 (2012).
doi: 10.1093/nar/gks579
Wu, S. L. et al. Genome-wide analysis of YB-1-RNA interactions reveals a novel role of YB-1 in miRNA processing in glioblastoma multiforme. Nucleic Acids Res. 43, 8516–8528 (2015).
doi: 10.1093/nar/gkv779
Lyabin, D. N., Eliseeva, I. A. & Ovchinnikov, L. P. YB-1 protein: functions and regulation. Wiley Interdiscip. Rev. RNA 5, 95–110 (2014).
doi: 10.1002/wrna.1200
Goodarzi, H. et al. Endogenous tRNA-derived fragments suppress breast cancer progression via ybx1 displacement. Cell 161, 790–802 (2015).
doi: 10.1016/j.cell.2015.02.053
Van Nostrand, E. L. et al. Robust transcriptome-wide discovery of RNA-binding protein binding sites with enhanced CLIP (eCLIP). Nat. Methods 13, 508–514 (2016).
doi: 10.1038/nmeth.3810
Van Nostrand, E. L. et al. Erratum to: robust, cost-effective profiling of RNA binding protein targets with single-end enhanced crosslinking and immunoprecipitation (seCLIP). Methods Mol. Biol. 1648, E1 (2017).
doi: 10.1007/978-1-4939-7204-3_19
de Pontual, L. et al. Germline deletion of the miR-17 approximately 92 cluster causes skeletal and growth defects in humans. Nat. Genet. 43, 1026–1030 (2011).
doi: 10.1038/ng.915
Henrion-Caude, A., Girard, M. & Amiel, J. MicroRNAs in genetic disease: rethinking the dosage. Curr. Gene. Ther. 12, 292–300 (2012).
doi: 10.2174/156652312802083602
Lewis, M. A. et al. An ENU-induced mutation of miR-96 associated with progressive hearing loss in mice. Nat. Genet. 41, 614–618 (2009).
doi: 10.1038/ng.369
Suzuki, H. I., Spengler, R. M., Grigelioniene, G., Kobayashi, T. & Sharp, P. A. Deconvolution of seed and RNA-binding protein crosstalk in RNAi-based functional genomics. Nat. Genet. 50, 657–661 (2018).
doi: 10.1038/s41588-018-0104-1
Kaminsky, E. B. et al. An evidence-based approach to establish the functional and clinical significance of copy number variants in intellectual and developmental disabilities. Genet. Med. 13, 777–784 (2011).
doi: 10.1097/GIM.0b013e31822c79f9
Niklasson, A. & Albertsson-Wikland, K. Continuous growth reference from 24th week of gestation to 24 months by gender. BMC Pediatr. 8, 8 (2008).
doi: 10.1186/1471-2431-8-8
Kvarnung, M. et al. Genomic screening in rare disorders: new mutations and phenotypes, highlighting ALG14 as a novel cause of severe intellectual disability. Clin. Genet. 94, 528–537 (2018).
doi: 10.1111/cge.13448
Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25, 1754–1760 (2009).
doi: 10.1093/bioinformatics/btp324
McKenna, A. et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 20, 1297–1303 (2010).
doi: 10.1101/gr.107524.110
Okonechnikov, K., Conesa, A. & Garcia-Alcalde, F. Qualimap 2: advanced multi-sample quality control for high-throughput sequencing data. Bioinformatics 32, 292–294 (2016).
pubmed: 26428292
Lindstrand, A. et al. Improved structural characterization of chromosomal breakpoints using high resolution custom array-CGH. Clin. Genet. 77, 552–562 (2010).
doi: 10.1111/j.1399-0004.2009.01341.x
Yang, H., Wang, H. & Jaenisch, R. Generating genetically modified mice using CRISPR/Cas-mediated genome engineering. Nat. Protoc. 9, 1956–1968 (2014).
doi: 10.1038/nprot.2014.134
Wein, M. N. et al. SIKs control osteocyte responses to parathyroid hormone. Nat. Commun. 7, 13176 (2016).
doi: 10.1038/ncomms13176
Eyre, D. Collagen cross-linking amino acids. Methods Enzymol. 144, 115–139 (1987).
doi: 10.1016/0076-6879(87)44176-1
Ohba, S., He, X., Hojo, H. & McMahon, A. P. Distinct transcriptional programs underlie Sox9 regulation of the mammalian chondrocyte. Cell Rep. 12, 229–243 (2015).
doi: 10.1016/j.celrep.2015.06.013
Langmead, B., Trapnell, C., Pop, M. & Salzberg, S. L. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome. Biol. 10, R25 (2009).
doi: 10.1186/gb-2009-10-3-r25
Zhang, Y. et al. Model-based analysis of ChIP-Seq (MACS). Genome. Biol. 9, R137 (2008).
doi: 10.1186/gb-2008-9-9-r137
Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, (15–21 (2013).
Trapnell, C. et al. Transcript assembly and quantification by RNA-seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat. Biotechnol. 28, 511–515 (2010).
doi: 10.1038/nbt.1621
Grant, G. R. et al. Comparative analysis of RNA-Seq alignment algorithms and the RNA-Seq unified mapper (RUM). Bioinformatics 27, 2518–2528 (2011).
doi: 10.1093/bioinformatics/btr427
Robinson, M. D., McCarthy, D. J. & Smyth, G. K. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26, 139–140 (2010).
doi: 10.1093/bioinformatics/btp616
Zamudio, J. R., Kelly, T. J. & Sharp, P. A. Argonaute-bound small RNAs from promoter-proximal RNA polymerase II. Cell 156, 920–934 (2014).
doi: 10.1016/j.cell.2014.01.041
Paz, I. et al. RBPmap: a web server for mapping binding sites of RNA-binding proteins. Nucleic Acids Res. 42, W361–W367 (2014).
doi: 10.1093/nar/gku406
Heinz, S. et al. Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. Mol. Cell 38, 576–589 (2010).
doi: 10.1016/j.molcel.2010.05.004

Auteurs

Giedre Grigelioniene (G)

Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
Department of Molecular Medicine and Surgery and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.
Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden.

Hiroshi I Suzuki (HI)

David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA.

Fulya Taylan (F)

Department of Molecular Medicine and Surgery and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.

Fatemeh Mirzamohammadi (F)

Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.

Zvi U Borochowitz (ZU)

Rappaport Faculty of Medicine, Technion-Israeli Institute of Technology, Medical Genetics Clinics, Assuta Medical Center, Haifa, Israel.

Ugur M Ayturk (UM)

Orthopaedic Research Labs, Department of Orthopaedic Surgery, Boston Children's Hospital, Boston, MA, USA.

Shay Tzur (S)

Laboratory of Molecular Medicine, Rambam Health Care Campus, Haifa, Israel.
Genomic Research Department, Emedgene Technologies, Tel Aviv, Israel.

Eva Horemuzova (E)

Department for Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden.
Pediatric Endocrinology Unit, Karolinska University Hospital, Stockholm, Sweden.

Anna Lindstrand (A)

Department of Molecular Medicine and Surgery and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.
Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden.

Mary Ann Weis (MA)

Department of Orthopedics and Sports Medicine, University of Washington, Seattle, WA, USA.

Gintautas Grigelionis (G)

Department of Molecular Medicine and Surgery and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.

Anna Hammarsjö (A)

Department of Molecular Medicine and Surgery and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.
Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden.

Elin Marsk (E)

Department of Otorhinolaryngology, Karolinska University Hospital, Stockholm, Sweden.

Ann Nordgren (A)

Department of Molecular Medicine and Surgery and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.
Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden.

Magnus Nordenskjöld (M)

Department of Molecular Medicine and Surgery and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.
Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden.

David R Eyre (DR)

Department of Orthopedics and Sports Medicine, University of Washington, Seattle, WA, USA.

Matthew L Warman (ML)

Orthopaedic Research Labs, Department of Orthopaedic Surgery, Boston Children's Hospital, Boston, MA, USA.

Gen Nishimura (G)

Center for Intractable Diseases, Saitama Medical University Hospital, Saitama, Japan.

Phillip A Sharp (PA)

David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA.
Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA.

Tatsuya Kobayashi (T)

Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA. tkobayashi1@mgh.harvard.edu.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH