Relaxation-compensated amide proton transfer (APT) MRI signal intensity is associated with survival and progression in high-grade glioma patients.


Journal

European radiology
ISSN: 1432-1084
Titre abrégé: Eur Radiol
Pays: Germany
ID NLM: 9114774

Informations de publication

Date de publication:
Sep 2019
Historique:
received: 03 11 2018
accepted: 04 02 2019
revised: 28 12 2018
pubmed: 28 2 2019
medline: 28 11 2019
entrez: 28 2 2019
Statut: ppublish

Résumé

The purpose of this study was to investigate the association of relaxation-compensated chemical exchange saturation transfer (CEST) MRI with overall survival (OS) and progression-free survival (PFS) in newly diagnosed high-grade glioma (HGG) patients. Twenty-six patients with newly diagnosed high-grade glioma (WHO grades III-IV) were included in this prospective IRB-approved study. CEST MRI was performed on a 7.0-T whole-body scanner. Association of patient OS/PFS with relaxation-compensated CEST MRI (amide proton transfer (APT), relayed nuclear Overhauser effect (rNOE)/NOE, downfield-rNOE-suppressed APT (dns-APT)) and diffusion-weighted imaging (apparent diffusion coefficient) were assessed using the univariate Cox proportional hazards regression model. Hazard ratios (HRs) and corresponding 95% confidence intervals were calculated. Furthermore, OS/PFS association with clinical parameters (age, gender, O6-methylguanine-DNA methyltransferase (MGMT) promotor methylation status, and therapy: biopsy + radio-chemotherapy vs. debulking surgery + radio-chemotherapy) were tested accordingly. Relaxation-compensated APT MRI was significantly correlated with patient OS (HR = 3.15, p = 0.02) and PFS (HR = 1.83, p = 0.009). The strongest association with PFS was found for the dns-APT metric (HR = 2.61, p = 0.002). These results still stand for the relaxation-compensated APT contrasts in a homogenous subcohort of n = 22 glioblastoma patients with isocitrate dehydrogenase (IDH) wild-type status. Among the tested clinical parameters, patient age (HR = 1.1, p = 0.001) and therapy (HR = 3.68, p = 0.026) were significant for OS; age additionally for PFS (HR = 1.04, p = 0.048). Relaxation-compensated APT MRI signal intensity is associated with overall survival and progression-free survival in newly diagnosed, previously untreated glioma patients and may, therefore, help to customize treatment and response monitoring in the future. • Amide proton transfer (APT) MRI signal intensity is associated with overall survival and progression in glioma patients. • Relaxation compensation enhances the information value of APT MRI in tumors. • Chemical exchange saturation transfer (CEST) MRI may serve as a non-invasive biomarker to predict prognosis and customize treatment.

Identifiants

pubmed: 30809720
doi: 10.1007/s00330-019-06066-2
pii: 10.1007/s00330-019-06066-2
doi:

Substances chimiques

Amides 0
Protons 0
Isocitrate Dehydrogenase EC 1.1.1.41

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

4957-4967

Références

Nat Med. 2003 Aug;9(8):1085-90
pubmed: 12872167
Magn Reson Med. 2003 Dec;50(6):1120-6
pubmed: 14648559
J Magn Reson Imaging. 2004 May;19(5):546-54
pubmed: 15112303
Lancet Oncol. 2005 Mar;6(3):167-75
pubmed: 15737833
N Engl J Med. 2005 Mar 10;352(10):997-1003
pubmed: 15758010
Proc Natl Acad Sci U S A. 2005 Nov 15;102(46):16759-64
pubmed: 16267128
Radiology. 2006 Dec;241(3):839-46
pubmed: 17032910
Radiology. 2008 May;247(2):490-8
pubmed: 18349315
N Engl J Med. 2008 Jul 31;359(5):492-507
pubmed: 18669428
Magn Reson Med. 2008 Oct;60(4):842-9
pubmed: 18816868
N Engl J Med. 2009 Feb 19;360(8):765-73
pubmed: 19228619
Ann Oncol. 2009 May;20 Suppl 4:126-8
pubmed: 19454432
J Clin Oncol. 2010 Apr 10;28(11):1963-72
pubmed: 20231676
Neuro Oncol. 2010 Jun;12(6):520-7
pubmed: 20511189
Stroke. 2010 Oct;41(10 Suppl):S147-51
pubmed: 20876492
Neuro Oncol. 2011 Oct;13(10):1151-61
pubmed: 21856685
J Neurooncol. 2012 Jul;108(3):491-8
pubmed: 22426926
Magn Reson Med. 2013 Mar 1;69(3):760-70
pubmed: 22577042
Neuroimage. 2013 Aug 15;77:114-24
pubmed: 23567889
Int J Comput Assist Radiol Surg. 2013 Jul;8(4):607-20
pubmed: 23588509
Magn Reson Med. 2014 May;71(5):1798-812
pubmed: 23813483
NMR Biomed. 2013 Dec;26(12):1815-22
pubmed: 24115020
Neuro Oncol. 2014 Mar;16(3):441-8
pubmed: 24305718
NMR Biomed. 2014 Mar;27(3):240-52
pubmed: 24395553
Lancet Oncol. 2014 Mar;15(3):246-8
pubmed: 24485878
Analyst. 2014 Jun 7;139(11):2687-90
pubmed: 24733370
PLoS One. 2014 Aug 11;9(8):e104181
pubmed: 25111650
J Magn Reson Imaging. 2015 Jul;42(1):87-96
pubmed: 25244574
NMR Biomed. 2015 Feb;28(2):217-30
pubmed: 25504828
J Neurooncol. 2015 Apr;122(2):339-48
pubmed: 25559689
Neuroimage. 2015 May 15;112:180-188
pubmed: 25727379
NMR Biomed. 2015 May;28(5):529-37
pubmed: 25788155
PLoS One. 2015 Mar 19;10(3):e0121220
pubmed: 25789657
NMR Biomed. 2015 Jul;28(7):906-13
pubmed: 26010522
Magn Reson Med. 2016 Apr;75(4):1630-9
pubmed: 26033553
Neurol Sci. 2016 Jan;37(1):23-29
pubmed: 26233232
Magn Reson Med. 2017 Jan;77(1):196-208
pubmed: 26845067
Magn Reson Med. 2017 Feb;77(2):571-580
pubmed: 26857219
Acta Neuropathol. 2016 Jun;131(6):803-20
pubmed: 27157931
Neuro Oncol. 2016 Dec;18(12):1673-1679
pubmed: 27298312
Magn Reson Med. 2017 Sep;78(3):1110-1120
pubmed: 27690156
Sci Rep. 2016 Oct 14;6:35142
pubmed: 27739434
Clin Cancer Res. 2016 Dec 1;22(23):5765-5771
pubmed: 27803067
Eur Radiol. 2017 Aug;27(8):3181-3189
pubmed: 28116517
J Neurooncol. 2017 Sep;134(3):495-504
pubmed: 28382534
Magn Reson Med. 2017 Sep;78(3):1100-1109
pubmed: 28714279
Sci Rep. 2017 Sep 4;7(1):10353
pubmed: 28871110
Eur Radiol. 2018 May;28(5):2115-2123
pubmed: 29234914
Neuro Oncol. 2018 Nov 12;20(12):1661-1671
pubmed: 29733378
Oncotarget. 2018 Jun 19;9(47):28772-28783
pubmed: 29983895

Auteurs

Daniel Paech (D)

Division of Radiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany. d.paech@dkfz.de.

Constantin Dreher (C)

Division of Radiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.

Sebastian Regnery (S)

Division of Radiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.
Department of Radiation Oncology, University Hospital Heidelberg, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany.

Jan-Eric Meissner (JE)

Division of Medical Physics in Radiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.

Steffen Goerke (S)

Division of Medical Physics in Radiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.

Johannes Windschuh (J)

Division of Medical Physics in Radiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.

Johanna Oberhollenzer (J)

Division of Radiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.

Miriam Schultheiss (M)

Division of Radiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.

Katerina Deike-Hofmann (K)

Division of Radiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.

Sebastian Bickelhaupt (S)

Division of Radiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.

Alexander Radbruch (A)

Division of Radiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.
Department of Radiology, University Hospital Essen, Essen, Germany.

Moritz Zaiss (M)

Magnetic Resonance Center, Max-Planck-Institute for Biological Cybernetics, Tuebingen, Germany.

Andreas Unterberg (A)

Department of Neurosurgery, University Hospital Heidelberg, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany.

Wolfgang Wick (W)

Department of Neurology, University Hospital Heidelberg, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany.

Martin Bendszus (M)

Department of Neuroradiology, University Hospital Heidelberg, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany.

Peter Bachert (P)

Division of Medical Physics in Radiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.

Mark E Ladd (ME)

Division of Medical Physics in Radiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.
Faculty of Physics and Astronomy, University of Heidelberg, 69120, Heidelberg, Germany.
Faculty of Medicine, University of Heidelberg, 69120, Heidelberg, Germany.

Heinz-Peter Schlemmer (HP)

Division of Radiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH