Relaxation-compensated amide proton transfer (APT) MRI signal intensity is associated with survival and progression in high-grade glioma patients.
Adult
Aged
Amides
Brain Neoplasms
/ diagnostic imaging
Diffusion Magnetic Resonance Imaging
/ methods
Disease Progression
Female
Glioblastoma
/ diagnostic imaging
Glioma
/ diagnostic imaging
Humans
Isocitrate Dehydrogenase
/ metabolism
Kaplan-Meier Estimate
Male
Middle Aged
Neoplasm Grading
Prognosis
Progression-Free Survival
Prospective Studies
Protons
Biomarkers, cancer
Glioblastoma
Glioma
Magnetic resonance imaging
Survival
Journal
European radiology
ISSN: 1432-1084
Titre abrégé: Eur Radiol
Pays: Germany
ID NLM: 9114774
Informations de publication
Date de publication:
Sep 2019
Sep 2019
Historique:
received:
03
11
2018
accepted:
04
02
2019
revised:
28
12
2018
pubmed:
28
2
2019
medline:
28
11
2019
entrez:
28
2
2019
Statut:
ppublish
Résumé
The purpose of this study was to investigate the association of relaxation-compensated chemical exchange saturation transfer (CEST) MRI with overall survival (OS) and progression-free survival (PFS) in newly diagnosed high-grade glioma (HGG) patients. Twenty-six patients with newly diagnosed high-grade glioma (WHO grades III-IV) were included in this prospective IRB-approved study. CEST MRI was performed on a 7.0-T whole-body scanner. Association of patient OS/PFS with relaxation-compensated CEST MRI (amide proton transfer (APT), relayed nuclear Overhauser effect (rNOE)/NOE, downfield-rNOE-suppressed APT (dns-APT)) and diffusion-weighted imaging (apparent diffusion coefficient) were assessed using the univariate Cox proportional hazards regression model. Hazard ratios (HRs) and corresponding 95% confidence intervals were calculated. Furthermore, OS/PFS association with clinical parameters (age, gender, O6-methylguanine-DNA methyltransferase (MGMT) promotor methylation status, and therapy: biopsy + radio-chemotherapy vs. debulking surgery + radio-chemotherapy) were tested accordingly. Relaxation-compensated APT MRI was significantly correlated with patient OS (HR = 3.15, p = 0.02) and PFS (HR = 1.83, p = 0.009). The strongest association with PFS was found for the dns-APT metric (HR = 2.61, p = 0.002). These results still stand for the relaxation-compensated APT contrasts in a homogenous subcohort of n = 22 glioblastoma patients with isocitrate dehydrogenase (IDH) wild-type status. Among the tested clinical parameters, patient age (HR = 1.1, p = 0.001) and therapy (HR = 3.68, p = 0.026) were significant for OS; age additionally for PFS (HR = 1.04, p = 0.048). Relaxation-compensated APT MRI signal intensity is associated with overall survival and progression-free survival in newly diagnosed, previously untreated glioma patients and may, therefore, help to customize treatment and response monitoring in the future. • Amide proton transfer (APT) MRI signal intensity is associated with overall survival and progression in glioma patients. • Relaxation compensation enhances the information value of APT MRI in tumors. • Chemical exchange saturation transfer (CEST) MRI may serve as a non-invasive biomarker to predict prognosis and customize treatment.
Identifiants
pubmed: 30809720
doi: 10.1007/s00330-019-06066-2
pii: 10.1007/s00330-019-06066-2
doi:
Substances chimiques
Amides
0
Protons
0
Isocitrate Dehydrogenase
EC 1.1.1.41
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
4957-4967Références
Nat Med. 2003 Aug;9(8):1085-90
pubmed: 12872167
Magn Reson Med. 2003 Dec;50(6):1120-6
pubmed: 14648559
J Magn Reson Imaging. 2004 May;19(5):546-54
pubmed: 15112303
Lancet Oncol. 2005 Mar;6(3):167-75
pubmed: 15737833
N Engl J Med. 2005 Mar 10;352(10):997-1003
pubmed: 15758010
Proc Natl Acad Sci U S A. 2005 Nov 15;102(46):16759-64
pubmed: 16267128
Radiology. 2006 Dec;241(3):839-46
pubmed: 17032910
Radiology. 2008 May;247(2):490-8
pubmed: 18349315
N Engl J Med. 2008 Jul 31;359(5):492-507
pubmed: 18669428
Magn Reson Med. 2008 Oct;60(4):842-9
pubmed: 18816868
N Engl J Med. 2009 Feb 19;360(8):765-73
pubmed: 19228619
Ann Oncol. 2009 May;20 Suppl 4:126-8
pubmed: 19454432
J Clin Oncol. 2010 Apr 10;28(11):1963-72
pubmed: 20231676
Neuro Oncol. 2010 Jun;12(6):520-7
pubmed: 20511189
Stroke. 2010 Oct;41(10 Suppl):S147-51
pubmed: 20876492
Neuro Oncol. 2011 Oct;13(10):1151-61
pubmed: 21856685
J Neurooncol. 2012 Jul;108(3):491-8
pubmed: 22426926
Magn Reson Med. 2013 Mar 1;69(3):760-70
pubmed: 22577042
Neuroimage. 2013 Aug 15;77:114-24
pubmed: 23567889
Int J Comput Assist Radiol Surg. 2013 Jul;8(4):607-20
pubmed: 23588509
Magn Reson Med. 2014 May;71(5):1798-812
pubmed: 23813483
NMR Biomed. 2013 Dec;26(12):1815-22
pubmed: 24115020
Neuro Oncol. 2014 Mar;16(3):441-8
pubmed: 24305718
NMR Biomed. 2014 Mar;27(3):240-52
pubmed: 24395553
Lancet Oncol. 2014 Mar;15(3):246-8
pubmed: 24485878
Analyst. 2014 Jun 7;139(11):2687-90
pubmed: 24733370
PLoS One. 2014 Aug 11;9(8):e104181
pubmed: 25111650
J Magn Reson Imaging. 2015 Jul;42(1):87-96
pubmed: 25244574
NMR Biomed. 2015 Feb;28(2):217-30
pubmed: 25504828
J Neurooncol. 2015 Apr;122(2):339-48
pubmed: 25559689
Neuroimage. 2015 May 15;112:180-188
pubmed: 25727379
NMR Biomed. 2015 May;28(5):529-37
pubmed: 25788155
PLoS One. 2015 Mar 19;10(3):e0121220
pubmed: 25789657
NMR Biomed. 2015 Jul;28(7):906-13
pubmed: 26010522
Magn Reson Med. 2016 Apr;75(4):1630-9
pubmed: 26033553
Neurol Sci. 2016 Jan;37(1):23-29
pubmed: 26233232
Magn Reson Med. 2017 Jan;77(1):196-208
pubmed: 26845067
Magn Reson Med. 2017 Feb;77(2):571-580
pubmed: 26857219
Acta Neuropathol. 2016 Jun;131(6):803-20
pubmed: 27157931
Neuro Oncol. 2016 Dec;18(12):1673-1679
pubmed: 27298312
Magn Reson Med. 2017 Sep;78(3):1110-1120
pubmed: 27690156
Sci Rep. 2016 Oct 14;6:35142
pubmed: 27739434
Clin Cancer Res. 2016 Dec 1;22(23):5765-5771
pubmed: 27803067
Eur Radiol. 2017 Aug;27(8):3181-3189
pubmed: 28116517
J Neurooncol. 2017 Sep;134(3):495-504
pubmed: 28382534
Magn Reson Med. 2017 Sep;78(3):1100-1109
pubmed: 28714279
Sci Rep. 2017 Sep 4;7(1):10353
pubmed: 28871110
Eur Radiol. 2018 May;28(5):2115-2123
pubmed: 29234914
Neuro Oncol. 2018 Nov 12;20(12):1661-1671
pubmed: 29733378
Oncotarget. 2018 Jun 19;9(47):28772-28783
pubmed: 29983895