Resveratrol Promotes Mitochondrial Biogenesis and Protects against Seizure-Induced Neuronal Cell Damage in the Hippocampus Following Status Epilepticus by Activation of the PGC-1α Signaling Pathway.
Animals
Disease Models, Animal
Hippocampus
/ drug effects
Male
Mitochondria
/ drug effects
Neurons
/ drug effects
Neuroprotective Agents
/ pharmacology
Organelle Biogenesis
Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha
/ metabolism
Rats
Rats, Sprague-Dawley
Resveratrol
/ pharmacology
Status Epilepticus
/ pathology
PGC-1α
hippocampus
mitochondrial biogenesis
resveratrol
status epilepticus
Journal
International journal of molecular sciences
ISSN: 1422-0067
Titre abrégé: Int J Mol Sci
Pays: Switzerland
ID NLM: 101092791
Informations de publication
Date de publication:
25 Feb 2019
25 Feb 2019
Historique:
received:
22
01
2019
revised:
13
02
2019
accepted:
21
02
2019
entrez:
3
3
2019
pubmed:
3
3
2019
medline:
18
7
2019
Statut:
epublish
Résumé
Peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) is known to regulate mitochondrial biogenesis. Resveratrol is present in a variety of plants, including the skin of grapes, blueberries, raspberries, mulberries, and peanuts. It has been shown to offer protective effects against a number of cardiovascular and neurodegenerative diseases, stroke, and epilepsy. This study examined the neuroprotective effect of resveratrol on mitochondrial biogenesis in the hippocampus following experimental status epilepticus. Kainic acid was microinjected into left hippocampal CA3 in Sprague Dawley rats to induce bilateral prolonged seizure activity. PGC-1α expression and related mitochondrial biogenesis were investigated. Amounts of nuclear respiratory factor 1 (NRF1), mitochondrial transcription factor A (Tfam), cytochrome c oxidase 1 (COX1), and mitochondrial DNA (mtDNA) were measured to evaluate the extent of mitochondrial biogenesis. Increased PGC-1α and mitochondrial biogenesis machinery after prolonged seizure were found in CA3. Resveratrol increased expression of PGC-1α, NRF1, and Tfam, NRF1 binding activity, COX1 level, and mtDNA amount. In addition, resveratrol reduced activated caspase-3 activity and attenuated neuronal cell damage in the hippocampus following status epilepticus. These results suggest that resveratrol plays a pivotal role in the mitochondrial biogenesis machinery that may provide a protective mechanism counteracting seizure-induced neuronal damage by activation of the PGC-1α signaling pathway.
Identifiants
pubmed: 30823590
pii: ijms20040998
doi: 10.3390/ijms20040998
pmc: PMC6412811
pii:
doi:
Substances chimiques
Neuroprotective Agents
0
Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha
0
Ppargc1a protein, rat
0
Resveratrol
Q369O8926L
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Subventions
Organisme : The Ministry of Science and Technology, Taiwan
ID : MOST103-2314-B-182A-029-MY3
Références
Cell. 1999 Jul 9;98(1):115-24
pubmed: 10412986
Stroke. 2001 Oct;32(10):2382-7
pubmed: 11588330
Stroke. 2002 Oct;33(10):2471-7
pubmed: 12364740
Epilepsia. 2004 Oct;45(10):1202-9
pubmed: 15461674
J Biol Chem. 2005 Apr 22;280(16):16456-60
pubmed: 15716268
J Cereb Blood Flow Metab. 2005 Dec;25(12):1557-72
pubmed: 15889042
Antioxid Redox Signal. 2006 Jan-Feb;8(1-2):1-38
pubmed: 16487034
J Biol Chem. 2006 Aug 4;281(31):21745-54
pubmed: 16751189
Cell. 2006 Dec 15;127(6):1109-22
pubmed: 17112576
Neuropharmacology. 2007 Apr;52(5):1263-73
pubmed: 17336342
Physiol Rev. 2008 Apr;88(2):611-38
pubmed: 18391175
Proc Natl Acad Sci U S A. 2008 Oct 7;105(40):15599-604
pubmed: 18829436
J Neurosci. 2008 Oct 1;28(40):9989-96
pubmed: 18829956
Epilepsia. 2009 Apr;50(4):731-46
pubmed: 19178557
Neurochem Res. 2009 Aug;34(8):1393-400
pubmed: 19219549
Exp Neurol. 2009 Aug;218(2):326-32
pubmed: 19268667
J Biol Chem. 2009 Aug 7;284(32):21379-85
pubmed: 19542216
J Neurosci. 2009 Jul 15;29(28):9090-103
pubmed: 19605646
J Neurosci Res. 2010 Feb 15;88(3):605-13
pubmed: 19774674
Annu Rev Pathol. 2010;5:253-95
pubmed: 20078221
Mol Neurobiol. 2010 Jun;41(2-3):375-83
pubmed: 20306310
Essays Biochem. 2010;47:69-84
pubmed: 20533901
J Neurosci Res. 2010 Nov 1;88(14):3144-54
pubmed: 20799369
J Bioenerg Biomembr. 2010 Dec;42(6):461-5
pubmed: 21153870
Neuroscience. 2011 Oct 27;194:234-40
pubmed: 21854834
Prog Neurobiol. 2011 Nov;95(3):373-95
pubmed: 21930182
Int J Mol Sci. 2011;12(10):7199-215
pubmed: 22072942
Cell Death Differ. 2012 Sep;19(9):1446-58
pubmed: 22388349
Nat Rev Mol Cell Biol. 2012 Mar 07;13(4):225-238
pubmed: 22395773
J Cereb Blood Flow Metab. 2012 Jul;32(7):1362-76
pubmed: 22453628
Antioxid Redox Signal. 2013 May 10;18(14):1818-92
pubmed: 22794138
Trends Endocrinol Metab. 2012 Sep;23(9):459-66
pubmed: 22817841
J Neuroinflammation. 2012 Jul 31;9:184
pubmed: 22849356
Neuroscience. 2013 Aug 15;245:157-65
pubmed: 23597828
Horm Metab Res. 2013 Dec;45(13):960-6
pubmed: 23950036
Br J Nutr. 2014 Jan 14;111(1):1-11
pubmed: 23953879
Neurobiol Dis. 2014 Feb;62:241-9
pubmed: 24141017
Mol Med Rep. 2015 Jan;11(1):521-6
pubmed: 25333348
FEBS J. 2015 Feb;282(4):647-72
pubmed: 25495651
Semin Cell Dev Biol. 2015 Apr;40:106-14
pubmed: 25773162
Chem Soc Rev. 2015 Aug 7;44(15):5246-64
pubmed: 25955411
Oxid Med Cell Longev. 2015;2015:314560
pubmed: 26576219
Brain Res Bull. 2016 Mar;121:255-62
pubmed: 26876758
Curr Opin Neurol. 2016 Apr;29(2):189-98
pubmed: 26886360
BMC Neurosci. 2016 Jun 10;17(1):33
pubmed: 27287829
CNS Neurosci Ther. 2016 Dec;22(12):988-999
pubmed: 27577016
Neurosci Bull. 2017 Jun;33(3):273-280
pubmed: 28161868
Brain Behav Immun. 2017 Aug;64:162-172
pubmed: 28268115
Am J Epidemiol. 2017 Jun 15;185(12):1304-1316
pubmed: 28472215
Int Immunopharmacol. 2017 Sep;50:208-215
pubmed: 28683365
Int J Mol Sci. 2017 Jul 24;18(7):null
pubmed: 28737710
Oxid Med Cell Longev. 2017;2017:2823454
pubmed: 29081884
Front Neurol. 2017 Nov 13;8:603
pubmed: 29180982
Mol Neurobiol. 2018 Sep;55(9):7512-7522
pubmed: 29427088
Ageing Res Rev. 2018 Jul;44:8-21
pubmed: 29580918
Molecules. 2018 Apr 24;23(5):null
pubmed: 29695122