Personalized Radiotherapy Design for Glioblastoma: Integrating Mathematical Tumor Models, Multimodal Scans, and Bayesian Inference.


Journal

IEEE transactions on medical imaging
ISSN: 1558-254X
Titre abrégé: IEEE Trans Med Imaging
Pays: United States
ID NLM: 8310780

Informations de publication

Date de publication:
08 2019
Historique:
pubmed: 6 3 2019
medline: 16 5 2020
entrez: 6 3 2019
Statut: ppublish

Résumé

Glioblastoma (GBM) is a highly invasive brain tumor, whose cells infiltrate surrounding normal brain tissue beyond the lesion outlines visible in the current medical scans. These infiltrative cells are treated mainly by radiotherapy. Existing radiotherapy plans for brain tumors derive from population studies and scarcely account for patient-specific conditions. Here, we provide a Bayesian machine learning framework for the rational design of improved, personalized radiotherapy plans using mathematical modeling and patient multimodal medical scans. Our method, for the first time, integrates complementary information from high-resolution MRI scans and highly specific FET-PET metabolic maps to infer tumor cell density in GBM patients. The Bayesian framework quantifies imaging and modeling uncertainties and predicts patient-specific tumor cell density with credible intervals. The proposed methodology relies only on data acquired at a single time point and, thus, is applicable to standard clinical settings. An initial clinical population study shows that the radiotherapy plans generated from the inferred tumor cell infiltration maps spare more healthy tissue thereby reducing radiation toxicity while yielding comparable accuracy with standard radiotherapy protocols. Moreover, the inferred regions of high tumor cell densities coincide with the tumor radioresistant areas, providing guidance for personalized dose-escalation. The proposed integration of multimodal scans and mathematical modeling provides a robust, non-invasive tool to assist personalized radiotherapy design.

Identifiants

pubmed: 30835219
doi: 10.1109/TMI.2019.2902044
pmc: PMC7170051
mid: NIHMS1574708
doi:

Substances chimiques

(18F)fluoroethyltyrosine 1326R5J1IA
Tyrosine 42HK56048U

Types de publication

Journal Article Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, Non-P.H.S.

Langues

eng

Sous-ensembles de citation

IM

Pagination

1875-1884

Subventions

Organisme : NCI NIH HHS
ID : P30 CA062203
Pays : United States
Organisme : NCI NIH HHS
ID : U54 CA217378
Pays : United States

Références

Curr Mol Med. 2009 May;9(4):442-58
pubmed: 19519402
JCO Clin Cancer Inform. 2019 Feb;3:1-8
pubmed: 30758984
Radiother Oncol. 2013 Dec;109(3):487-92
pubmed: 23953407
Phys Med Biol. 2007 Dec 7;52(23):6893-908
pubmed: 18029982
J R Soc Interface. 2017 Nov;14(136):
pubmed: 29118112
Inf Process Med Imaging. 2011;22:735-47
pubmed: 21761700
Cancer Imaging. 2004 Oct 21;4(2):153-61
pubmed: 18250025
J Neuropathol Exp Neurol. 2007 Jan;66(1):1-9
pubmed: 17204931
Bull Math Biol. 2018 May;80(5):1259-1291
pubmed: 28493055
Int J Radiat Oncol Biol Phys. 2004 Nov 1;60(3):853-60
pubmed: 15465203
J Neurooncol. 2008 Jun;88(2):205-10
pubmed: 18317691
Am J Clin Oncol. 2014 Apr;37(2):177-81
pubmed: 23211224
J R Soc Interface. 2015 Feb 6;12(103):
pubmed: 25540239
Med Image Comput Comput Assist Interv. 2005;8(Pt 1):400-8
pubmed: 16685871
Bull Math Biol. 2018 Apr;80(4):701-737
pubmed: 29500719
Phys Med Biol. 2016 Mar 7;61(5):2145-61
pubmed: 26907478
Int J Radiat Oncol Biol Phys. 2009 Mar 1;73(3):699-708
pubmed: 18723297
Neuro Oncol. 2013 Mar;15(3):341-51
pubmed: 23335162
Br J Radiol. 2012 Sep;85(1017):e770-81
pubmed: 22919020
BMC Cancer. 2010 Oct 06;10:533
pubmed: 20925951
Cancer Res. 2017 Aug 1;77(15):4171-4184
pubmed: 28536277
Ann Oncol. 2014 Sep;25 Suppl 3:iii93-101
pubmed: 24782454
Int J Radiat Oncol Biol Phys. 1989 Dec;17(6):1347-50
pubmed: 2557310
Phys Med Biol. 2014 Feb 7;59(3):747-70
pubmed: 24440875
Strahlenther Onkol. 2012 Apr;188(4):334-9
pubmed: 22349712
N Engl J Med. 2005 Mar 10;352(10):987-96
pubmed: 15758009
Bull Math Biol. 2015 May;77(5):846-56
pubmed: 25795318

Auteurs

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH