O(2) -Valued Hopfield Neural Networks.


Journal

IEEE transactions on neural networks and learning systems
ISSN: 2162-2388
Titre abrégé: IEEE Trans Neural Netw Learn Syst
Pays: United States
ID NLM: 101616214

Informations de publication

Date de publication:
12 2019
Historique:
pubmed: 8 3 2019
medline: 11 7 2020
entrez: 8 3 2019
Statut: ppublish

Résumé

In complex-valued Hopfield neural networks (CHNNs), the neuron states are complex numbers whose amplitudes are: 1) they can also be described in special orthogonal matrices of order and 2) here, we propose a new Hopfield model, the O(2) -valued Hopfield neural network [ O(2) -HNN], whose neuron states are extended to orthogonal matrices. Its neuron states are embedded in 4-D space, while those of CHNNs are embedded in 2-D space. Computer simulations were conducted to compare the noise tolerance (NT) and storage capacity (SC) of CHNNs, O(2) -HNNs, and rotor Hopfield neural networks. In terms of SC, O(2) -HNNs outperformed the others, while in NT, they outdid CHNNs.

Identifiants

pubmed: 30843853
doi: 10.1109/TNNLS.2019.2897994
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

3833-3838

Auteurs

Articles similaires

Humans Meta-Analysis as Topic Sample Size Models, Statistical Computer Simulation
Humans Algorithms Software Artificial Intelligence Computer Simulation

Unsupervised learning for real-time and continuous gait phase detection.

Dollaporn Anopas, Yodchanan Wongsawat, Jetsada Arnin
1.00
Humans Gait Neural Networks, Computer Unsupervised Machine Learning Walking
Humans Shoulder Fractures Tomography, X-Ray Computed Neural Networks, Computer Female

Classifications MeSH