The stray magnetic fields in Magnetic Resonance Current Density Imaging (MRCDI).
Cable currents
Magnetic Resonance Current Density Imaging
Magnetic resonance electric impedance tomography
Physiological noise
Journal
Physica medica : PM : an international journal devoted to the applications of physics to medicine and biology : official journal of the Italian Association of Biomedical Physics (AIFB)
ISSN: 1724-191X
Titre abrégé: Phys Med
Pays: Italy
ID NLM: 9302888
Informations de publication
Date de publication:
Mar 2019
Mar 2019
Historique:
received:
18
12
2018
revised:
12
02
2019
accepted:
28
02
2019
pubmed:
12
3
2019
medline:
16
4
2019
entrez:
12
3
2019
Statut:
ppublish
Résumé
MR Current Density Imaging (MRCDI) involves weak current-injection into the head. The resulting magnetic field changes are measured by MRI. Stray fields pose major challenges since these can dominate the fields caused by tissue currents. We analyze the sources and influences of stray fields. First, we supply validation data for a recently introduced MRCDI method with an unprecedented noise floor of ∼0.1 nT in vivo. Second, we assess the accuracy limit of the method and our corresponding cable current correction in phantoms ensuring high signal-to-noise ratio (SNR). Third, we simulate the influence of stray fields on current flow reconstructions for various realistic experimental set-ups. Fourth, we experimentally determine the physiological field variations. Finally, we explore the consequences of head positioning in an exemplary head coil, since off-center positioning provides space for limiting cable-induced fields. The cable correction method performs well except near the cables. Unless correcting for cable currents, the reconstructed current flow is easily misestimated by up to 45% for a realistic experimental set-up. Stray fields dominating the fields caused by tissue currents can occur, e.g. due to a wire segment 20 cm away from the imaged region, or due to a slight cable misalignment of 3°. The noise is increased by 40% due to physiological factors. Minor patient movements can cause field changes of ∼40 nT. Off-centered head positioning can locally reduce SNR by e.g. 30%. Quantification of stray fields showed that MRCDI requires careful field correction. After cable correction, physiological noise is a limiting factor.
Identifiants
pubmed: 30853265
pii: S1120-1797(19)30043-2
doi: 10.1016/j.ejmp.2019.02.022
pii:
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
142-150Informations de copyright
Copyright © 2019 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.