Can silicone models replace animal models in hands-on training for endovascular stroke therapy?
Animal model
endovascular neurointervention
silicone model
stroke
training
Journal
Interventional neuroradiology : journal of peritherapeutic neuroradiology, surgical procedures and related neurosciences
ISSN: 2385-2011
Titre abrégé: Interv Neuroradiol
Pays: United States
ID NLM: 9602695
Informations de publication
Date de publication:
Aug 2019
Aug 2019
Historique:
pubmed:
22
3
2019
medline:
24
1
2020
entrez:
22
3
2019
Statut:
ppublish
Résumé
Since thrombectomy has become a standard treatment technique for stroke, there is great demand for well-trained interventionalists. We offer practical courses on both silicone models and porcine models, and conducted a survey to evaluate whether ex vivo training models could replace in vivo models in the future. In total, 110 neurointerventionalists participating in 30 training courses were included in our survey using a semi-structured questionnaire. The level of experience in thrombectomy maneuvers was almost balanced in our sample (52% experienced and 48% less-experienced participants). Silicone models were regarded as useful training tools regardless of the participants' experience ( Even experienced participants benefit from silicone models. Silicone models are a good preparation for animal models but cannot replace them. Categorizing participants depending on their experience and their individual needs before practical training may allow for more efficient endovascular training.
Identifiants
pubmed: 30895839
doi: 10.1177/1591019919833843
pmc: PMC6607613
doi:
Substances chimiques
Silicones
0
Types de publication
Comparative Study
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
397-402Références
Am J Surg. 1999 Jan;177(1):28-32
pubmed: 10037304
Br J Surg. 2004 Dec;91(12):1549-58
pubmed: 15547882
J Vasc Surg. 2004 Dec;40(6):1112-7
pubmed: 15622364
J Vasc Surg. 2004 Dec;40(6):1118-25
pubmed: 15622365
Can Assoc Radiol J. 2004 Dec;55(5):326-9
pubmed: 15646463
Neurol Med Chir (Tokyo). 2005 Nov;45(11):567-72; discussion 572-3
pubmed: 16308515
Eur J Vasc Endovasc Surg. 2006 Jun;31(6):588-93
pubmed: 16387517
Cyberpsychol Behav. 2006 Apr;9(2):245-7
pubmed: 16640488
AJNR Am J Neuroradiol. 2006 Jun-Jul;27(6):1357-61
pubmed: 16775297
Ann Surg. 2006 Sep;244(3):343-52
pubmed: 16926560
J Vasc Surg. 2007 Jan;45(1):149-54
pubmed: 17210400
Cardiovasc Intervent Radiol. 2007 May-Jun;30(3):455-61
pubmed: 17225971
Neurology. 2009 Sep 29;73(13):1066-72
pubmed: 19786699
Interv Neuroradiol. 2004 Mar 30;10 Suppl 1:107-12
pubmed: 20587284
Circulation. 2011 Jun 7;123(22):2591-601
pubmed: 21646506
J Neurointerv Surg. 2012 Nov;4(6):438-41
pubmed: 22015637
J Neurointerv Surg. 2013 Jul;5(4):376-81
pubmed: 22576472
Ultrasound Obstet Gynecol. 2013 Aug;42(2):213-7
pubmed: 23303574
Interv Neuroradiol. 2013 Jun;19(2):153-8
pubmed: 23693037
Neurosurgery. 2013 Oct;73 Suppl 1:46-50
pubmed: 24051882
Neurosurg Rev. 2014 Apr;37(2):331-7; discussion 337
pubmed: 24463914
Br J Surg. 2014 Aug;101(9):1063-76
pubmed: 24827930
Lab Anim (NY). 2016 Feb;45(2):67-74
pubmed: 26814353
Cureus. 2016 Aug 29;8(8):e756
pubmed: 27733961
Sci Rep. 2016 Dec 15;6:39168
pubmed: 27976687
PLoS One. 2017 Feb 24;12(2):e0172637
pubmed: 28235044
Neuropharmacology. 2018 May 15;134(Pt B):272-279
pubmed: 29505787
Stroke. 2018 Jul;49(7):e239-e242
pubmed: 29866758
Surg Innov. 2019 Apr;26(2):234-243
pubmed: 30646810