A method, framework, and tutorial for efficiently simulating models of decision-making.
Decision-making
Evidence accumulation models
Probability density approximation
Random number generation
Journal
Behavior research methods
ISSN: 1554-3528
Titre abrégé: Behav Res Methods
Pays: United States
ID NLM: 101244316
Informations de publication
Date de publication:
10 2019
10 2019
Historique:
pubmed:
30
3
2019
medline:
28
1
2020
entrez:
30
3
2019
Statut:
ppublish
Résumé
Evidence accumulation models (EAMs) have become the dominant models of rapid decision-making. Several variants of these models have been proposed, ranging from the simple linear ballistic accumulator (LBA) to the more complex leaky-competing accumulator (LCA), and further extensions that include time-varying rates of evidence accumulation or decision thresholds. Although applications of the simpler variants have been widespread, applications of the more complex models have been fewer, largely due to their intractable likelihood function and the computational cost of mass simulation. Here, I present a framework for efficiently fitting complex EAMs, which uses a new, efficient method of simulating these models. I find that the majority of simulation time is taken up by random number generation (RNG) from the normal distribution, needed for the stochastic noise of the differential equation. To reduce this inefficiency, I propose using the well-known concept within computer science of "look-up tables" (LUTs) as an approximation to the inverse cumulative density function (iCDF) method of RNG, which I call "LUT-iCDF". I show that when using an appropriately sized LUT, simulations using LUT-iCDF closely match those from the standard RNG method in R. My framework, which I provide a detailed tutorial on how to implement, includes C code for 12 different variants of EAMs using the LUT-iCDF method, and should make the implementation of complex EAMs easier and faster.
Identifiants
pubmed: 30924105
doi: 10.3758/s13428-019-01219-z
pii: 10.3758/s13428-019-01219-z
pmc: PMC6797646
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
2390-2404Références
Cogn Sci. 2018 Jun 5;:
pubmed: 29873105
J Neurophysiol. 2012 Dec;108(11):2912-30
pubmed: 22993260
Psychon Bull Rev. 2012 Feb;19(1):139-45
pubmed: 22144142
Psychol Rev. 2010 Oct;117(4):1113-43
pubmed: 20822291
Eur J Neurosci. 2006 Dec;24(12):3628-41
pubmed: 17229111
Cogn Psychol. 2014 Jul;72:162-95
pubmed: 24762975
J Math Psychol. 2017 Dec;81:80-97
pubmed: 29200501
Behav Res Methods. 2018 Apr;50(2):730-743
pubmed: 28597236
Psychol Rev. 2018 Apr;125(3):329-362
pubmed: 29265855
Psychol Rev. 2001 Jul;108(3):550-92
pubmed: 11488378
J Neurosci. 2015 Feb 11;35(6):2476-84
pubmed: 25673842
Cogn Psychol. 2016 Mar;85:1-29
pubmed: 26760448
J Neurophysiol. 2015 Jul;114(1):40-7
pubmed: 25904706
Curr Opin Neurobiol. 1994 Aug;4(4):569-79
pubmed: 7812147
J Neurosci. 1993 Jan;13(1):334-50
pubmed: 8423479
Psychol Rev. 2010 Oct;117(4):1275-93
pubmed: 21038979
Psychon Bull Rev. 2014 Apr;21(2):227-50
pubmed: 24258272
Psychol Rev. 2018 Jul;125(4):592-605
pubmed: 29952624
J Affect Disord. 2014 Feb;155:65-74
pubmed: 24268546
J Neurosci. 2012 Mar 14;32(11):3612-28
pubmed: 22423085
Psychon Bull Rev. 2009 Dec;16(6):1129-35
pubmed: 19966267
Nature. 1993 May 27;363(6427):345-7
pubmed: 8497317
Psychon Bull Rev. 2002 Sep;9(3):438-81
pubmed: 12412886
J Neurosci. 2002 Nov 1;22(21):9475-89
pubmed: 12417672
Mem Cognit. 2017 Oct;45(7):1193-1205
pubmed: 28585159
J Neurosci. 2011 Nov 23;31(47):17242-9
pubmed: 22114290
Behav Res Methods. 2007 Nov;39(4):767-75
pubmed: 18183889
Psychol Rev. 2008 Apr;115(2):396-425
pubmed: 18426295
Psychol Rev. 2017 Apr;124(3):339-345
pubmed: 28150957
Neuron. 2011 Feb 24;69(4):818-31
pubmed: 21338889
J Neurosci. 2009 Sep 16;29(37):11560-71
pubmed: 19759303
Cogn Psychol. 2008 Nov;57(3):153-78
pubmed: 18243170
Psychon Bull Rev. 2017 Apr;24(2):597-606
pubmed: 27562760
Cogn Sci. 2014 May-Jun;38(4):701-35
pubmed: 24124986
Behav Res Methods. 2009 Nov;41(4):1095-110
pubmed: 19897817
J Exp Psychol Gen. 2013 Nov;142(4):1047-73
pubmed: 23163766
Sci Rep. 2017 Nov 27;7(1):16433
pubmed: 29180789
Behav Res Methods. 2018 Apr;50(2):589-603
pubmed: 28455795