Quantitative analysis of microcystin variants by capillary electrophoresis mass spectrometry with dynamic pH barrage junction focusing.


Journal

Electrophoresis
ISSN: 1522-2683
Titre abrégé: Electrophoresis
Pays: Germany
ID NLM: 8204476

Informations de publication

Date de publication:
09 2019
Historique:
received: 17 01 2019
revised: 04 03 2019
accepted: 24 03 2019
pubmed: 30 3 2019
medline: 5 3 2020
entrez: 30 3 2019
Statut: ppublish

Résumé

Dynamic pH junction is an online focusing method in CE based on the electrophoretic mobility difference of analytes in the sample matrix and the background electrolyte. An advantage of this method over the conventional CE is that the sensitivity can be significantly improved. By injecting a long sample plug in the capillary and focusing the analytes at the pH boundary between the background electrolyte and sample matrix, the LOD can be improved by 10-100 folds. The dynamic pH junction method can be easily coupled with ESI-MS. In this work, we used this method for the analysis of microcystins (MCs). The detection limits and dynamic ranges were studied. The separation was optimized by adjusting the injection time, and concentrations and pH values of the background electrolyte. The optimization of analyte focusing leads to enhanced detection response compared to conventional injections, achieving 200-400 fold higher averaged peak heights for four microcystin (MC) variants. More importantly, this method was successfully used for the quantitative analysis of microcystins (MCs) in crude algae samples from natural water bodies, making it promising for practical applications.

Identifiants

pubmed: 30924152
doi: 10.1002/elps.201900042
doi:

Substances chimiques

Microcystins 0
Methanol Y4S76JWI15

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

2285-2293

Subventions

Organisme : National Natural Science Foundation of China
ID : 21475061
Pays : International
Organisme : Nanjing Science and Technology Plan
ID : 201505008
Pays : International
Organisme : Nanjing Qixia Innovation Fund
ID : GC201801
Pays : International
Organisme : Nanjing Qixia Innovation Fund
ID : ZY201813
Pays : International

Informations de copyright

© 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Références

Domingos, P., Rubim, T. K., Molica, R. J. R., Azevedo, S. M. F. O., Carmichael, W. W., Environ. Toxicol. 1999, 14, 31-35.
Foster, J. M., Climate Progress 2013. https://thinkprogress.org/lake-erie-is-dying-again-and-warmer-waters-and-wetter-weather-are-to-blame-96956c15f046/
Wines, M., Spring Rain, Then Foul Algae in Ailing Lake Erie, The New York Times, New York March 14, 2013.
van Apeldoorn, M. E., van Egmond, H. P., Speijers, G. J. A., Bakker, G. J. I., Mol. Nutr. Food Res. 2007, 51, 7-60.
Holtcamp, W., Environ. Health Perspect. 2012, 120, a110-a116.
Guidelines for drinking-water quality, World Health Organization, 1998. https://www.who.int/water_sanitation_health/dwq/2edaddvol2a.pdf
Liu, S., Zhao, Y., Jiang, W., Wu, M., Ma, F., Water Air Soil Pollut. 2014, 225, 2093.
Botes, D. P., Tuinman, A. A., Wessels, P. L., Viljoen, C. C., Kruger, H., Williams, D. H., Santikarn, S., Smith, R. J., Hammond, S. J., J. Chem. Soc., Perkin Trans. 1 1984, 2311-2318.
Miles, C. O., Melanson, J. E., Ballot, A., Environ. Sci. Technol. 2014, 48, 13307-13315.
Neffling, M.-R., Lance, E., Meriluoto, J., Environ. Pollut. 2010, 158, 948-952.
Puerto, M., Pichardo, S., Jos, Á., Cameán, A. M., Toxicon 2009, 54, 161-169.
Prieto, A. I., Jos, A., Pichardo, S., Moreno, I., de Sotomayor, M. Á., Moyano, R., Blanco, A., Cameán, A. M., Environ. Toxicol. 2009, 24, 563-579.
Jiang, W., Chen, L., Batchu, S. R., Gardinali, P. R., Jasa, L., Marsalek, B., Zboril, R., Dionysiou, D. D., O'Shea, K. E., Sharma, V. K., Environ. Sci. Technol. 2014, 48, 12164-12172.
Bouaı̈cha, N., Maatouk, I., Vincent, G., Levi, Y., Food Chem. Toxicol. 2002, 40, 1677-1683.
Foss, A. J., Aubel, M. T., Toxicon 2015, 104, 91-101.
Pilotto, L. S., Douglas, R. M., Burch, M. D., Cameron, S., Beers, M., Rouch, G. J., Robinson, P., Kirk, M., Cowie, C. T., Hardiman, S., Aust. New Zealand J. Public Health 1997, 21, 562-566.
Campbell, D. L., Lawton, L. A., Beattie, K. A., Codd, G. A., Environ. Toxicol. Water Quality 1994, 9, 71-77.
Vasas, G., Szydlowska, D., Gáspár, A., Welker, M., Trojanowicz, M., Borbély, G., J. Biochem. Biophys. Methods 2006, 66, 87-97.
Zhang, J., Lei, J., Pan, R., Leng, C., Hu, Z., Ju, H., Chem. Commun. 2011, 47, 668-670.
Zhang, J., Lei, J., Xu, C., Ding, L., Ju, H., Anal. Chem. 2010, 82, 1117-1122.
Zhang, L., Ping, X., Yang, Z., Talanta 2004, 62, 191-198.
Landers, J. P., Handbook of Capillary and Microchip Electrophoresis and Associated Microtechniques, CRC Press, Ann Arbor 1994.
Bateman, K. P., Thibault, P., Douglas, D. J., White, R. L., J. Chromatogr. A 1995, 712, 253-268.
Simpson, S. L., Quirino, J. P., Terabe, S., J. Chromatogr. A 2008, 1184, 504-541.
Simpson, D. C., Smith, R. D., Electrophoresis 2005, 26, 1291-1305.
Nesbitt, C. A., Zhang, H., Yeung, K. K.-C., Anal. Chim. Acta 2008, 627, 3-24.
Lu, M., Zhang, L., Feng, Q., Xia, S., Chi, Y., Tong, P., Chen, G., Electrophoresis 2008, 29, 936-943.
Kitagawa, F., Otsuka, K., J. Chromatogr. A 2014, 1335, 43-60.
Osbourn, D. M., Weiss, D. J., Lunte, C. E., Electrophoresis 2000, 21, 2768.
Breadmore, M. C., Dawod, M., Quirino, J. P., Electrophoresis 2011, 32, 127-148.
Chiu, T.-C., Anal. Bioanal. Chem. 2013, 405, 7919-7930.
Breadmore, M. C., Thabano, J. R. E., Dawod, M., Kazarian, A. A., Quirino, J. P., Guijt, R. M., Electrophoresis 2009, 30, 230-248.
Wang, L., Tong, W., Da Yong Chen, D., J. Chromatogr. B 2018.
Imami, K., Monton, M. R. N., Ishihama, Y., Terabe, S., J. Chromatogr. A 2007, 1148, 250-255.
Britz-McKibbin, P., Chen, D. D., Anal. Chem. 2000, 72, 1242-1252.
Duso, A. B., Chen, D. D. Y., Anal. Chem. 2002, 74, 2938-2942.
Baidoo, E. E., Benke, P. I., Neusüss, C., Pelzing, M., Kruppa, G., Leary, J. A., Keasling, J. D., Anal. Chem. 2008, 80, 3112-3122.
Britz-McKibbin, P., Bebault, G. M., Chen, D. D., Anal. Chem. 2000, 72, 1729-1735.
Britz-McKibbin, P., Otsuka, K., Terabe, S., Anal. Chem. 2002, 74, 3736-3743.
Monton, M. R. N., Imami, K., Nakanishi, M., Kim, J.-B., Terabe, S., J. Chromatogr. A 2005, 1079, 266-273.
Lindenburg, P. W., Ramautar, R., Jayo, R. G., Chen, D. D. Y., Hankemeier, T., Electrophoresis 2014, 35, 1308-1314.
Kim, J.-B., Okamoto, Y., Terabe, S., J. Chromatogr. A 2003, 1018, 251-256.
Tong, P., Zhang, L., He, Y., Tang, S., Cheng, J., Chen, G., Talanta 2010, 82, 1101-1106.

Auteurs

Ping Yan (P)

Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biomedical Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, P. R. China.

Keke Zhang (K)

Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biomedical Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, P. R. China.

Lingyu Wang (L)

Department of Chemistry, University of British Columbia, Vancouver, BC, Canada.

Wenjun Tong (W)

Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biomedical Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, P. R. China.

David D Y Chen (DDY)

Department of Chemistry, University of British Columbia, Vancouver, BC, Canada.

Articles similaires

Aspergillus Hydrogen-Ion Concentration Coculture Techniques Secondary Metabolism Streptomyces rimosus
Humans Middle Aged Female Male Surveys and Questionnaires
Adolescent Child Female Humans Male

Classifications MeSH