The genome of the giant Nomura's jellyfish sheds light on the early evolution of active predation.
Jellyfish mobility
Medusa structure formation
Scyphozoa
de novo genome assembly
Journal
BMC biology
ISSN: 1741-7007
Titre abrégé: BMC Biol
Pays: England
ID NLM: 101190720
Informations de publication
Date de publication:
29 03 2019
29 03 2019
Historique:
received:
08
01
2019
accepted:
28
02
2019
entrez:
31
3
2019
pubmed:
31
3
2019
medline:
9
11
2019
Statut:
epublish
Résumé
Unique among cnidarians, jellyfish have remarkable morphological and biochemical innovations that allow them to actively hunt in the water column and were some of the first animals to become free-swimming. The class Scyphozoa, or true jellyfish, are characterized by a predominant medusa life-stage consisting of a bell and venomous tentacles used for hunting and defense, as well as using pulsed jet propulsion for mobility. Here, we present the genome of the giant Nomura's jellyfish (Nemopilema nomurai) to understand the genetic basis of these key innovations. We sequenced the genome and transcriptomes of the bell and tentacles of the giant Nomura's jellyfish as well as transcriptomes across tissues and developmental stages of the Sanderia malayensis jellyfish. Analyses of the Nemopilema and other cnidarian genomes revealed adaptations associated with swimming, marked by codon bias in muscle contraction and expansion of neurotransmitter genes, along with expanded Myosin type II family and venom domains, possibly contributing to jellyfish mobility and active predation. We also identified gene family expansions of Wnt and posterior Hox genes and discovered the important role of retinoic acid signaling in this ancient lineage of metazoans, which together may be related to the unique jellyfish body plan (medusa formation). Taken together, the Nemopilema jellyfish genome and transcriptomes genetically confirm their unique morphological and physiological traits, which may have contributed to the success of jellyfish as early multi-cellular predators.
Sections du résumé
BACKGROUND
Unique among cnidarians, jellyfish have remarkable morphological and biochemical innovations that allow them to actively hunt in the water column and were some of the first animals to become free-swimming. The class Scyphozoa, or true jellyfish, are characterized by a predominant medusa life-stage consisting of a bell and venomous tentacles used for hunting and defense, as well as using pulsed jet propulsion for mobility. Here, we present the genome of the giant Nomura's jellyfish (Nemopilema nomurai) to understand the genetic basis of these key innovations.
RESULTS
We sequenced the genome and transcriptomes of the bell and tentacles of the giant Nomura's jellyfish as well as transcriptomes across tissues and developmental stages of the Sanderia malayensis jellyfish. Analyses of the Nemopilema and other cnidarian genomes revealed adaptations associated with swimming, marked by codon bias in muscle contraction and expansion of neurotransmitter genes, along with expanded Myosin type II family and venom domains, possibly contributing to jellyfish mobility and active predation. We also identified gene family expansions of Wnt and posterior Hox genes and discovered the important role of retinoic acid signaling in this ancient lineage of metazoans, which together may be related to the unique jellyfish body plan (medusa formation).
CONCLUSIONS
Taken together, the Nemopilema jellyfish genome and transcriptomes genetically confirm their unique morphological and physiological traits, which may have contributed to the success of jellyfish as early multi-cellular predators.
Identifiants
pubmed: 30925871
doi: 10.1186/s12915-019-0643-7
pii: 10.1186/s12915-019-0643-7
pmc: PMC6441219
doi:
Types de publication
Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
28Subventions
Organisme : NICHD NIH HHS
ID : R01 HD073104
Pays : United States
Organisme : NICHD NIH HHS
ID : R01 HD091846
Pays : United States
Références
Nat Commun. 2011 Aug 23;2:442
pubmed: 21863009
Mol Biol Evol. 2017 Jul 1;34(7):1812-1819
pubmed: 28387841
Bioinformatics. 2010 Jan 1;26(1):136-8
pubmed: 19855105
Nat Ecol Evol. 2019 Jan;3(1):96-104
pubmed: 30510179
Subcell Biochem. 2014;70:55-73
pubmed: 24962881
Science. 2007 Jul 6;317(5834):86-94
pubmed: 17615350
Nucleic Acids Res. 2006 Jul 1;34(Web Server issue):W435-9
pubmed: 16845043
J Exp Biol. 2011 Apr 15;214(Pt 8):1215-23
pubmed: 21430196
Bioinformatics. 2015 Oct 1;31(19):3081-4
pubmed: 26019240
Dev Biol. 2009 Aug 1;332(1):2-24
pubmed: 19465018
Nat Genet. 1999 Mar;21(3):265-9
pubmed: 10080177
J Proteomics. 2014 Jun 25;106:17-29
pubmed: 24747124
Bioinformatics. 2011 Feb 15;27(4):578-9
pubmed: 21149342
Bioinformatics. 2009 Apr 15;25(8):1091-3
pubmed: 19237447
J Exp Zool. 1999 Apr 15;285(1):63-75
pubmed: 10327652
Bioinformatics. 2017 Mar 15;33(6):799-806
pubmed: 27273673
Nature. 2011 Jul 24;476(7360):320-3
pubmed: 21785439
Curr Biol. 2014 Feb 3;24(3):263-73
pubmed: 24440392
Gene. 1988 Jun 15;66(1):135-46
pubmed: 2458299
Gigascience. 2012 Dec 27;1(1):18
pubmed: 23587118
Nat Protoc. 2009;4(1):44-57
pubmed: 19131956
J Morphol. 1981 Dec;170(3):383-399
pubmed: 30153719
PLoS One. 2009;4(1):e4231
pubmed: 19156208
J Mol Biol. 1993 May 20;231(2):539-45
pubmed: 8510165
Integr Comp Biol. 2012 Dec;52(6):835-41
pubmed: 22767488
Ontogenez. 2012 Sep-Oct;43(5):333-49
pubmed: 23101407
Curr Biol. 2002 Nov 19;12(22):R776-8
pubmed: 12445403
Cytogenet Genome Res. 2005;110(1-4):462-7
pubmed: 16093699
BMC Genomics. 2015 Feb 14;16:74
pubmed: 25757467
Nat Protoc. 2012 Mar 01;7(3):562-78
pubmed: 22383036
Dev Growth Differ. 2009 Apr;51(3):167-83
pubmed: 19379274
Biodivers Data J. 2014 Apr 29;(2):e1079
pubmed: 24891832
BMC Bioinformatics. 2005 Feb 15;6:31
pubmed: 15713233
Biochim Biophys Acta. 2011 Aug;1812(8):1023-31
pubmed: 20970498
Bioinformatics. 2005 Jun;21 Suppl 1:i351-8
pubmed: 15961478
Toxins (Basel). 2015 Jun 18;7(6):2251-71
pubmed: 26094698
Mol Biol Evol. 2015 Mar;32(3):740-53
pubmed: 25518955
Genome Res. 2009 Jan;19(1):143-9
pubmed: 18838612
Nat Ecol Evol. 2019 May;3(5):801-810
pubmed: 30858591
Proc Natl Acad Sci U S A. 1998 Nov 10;95(23):13442-7
pubmed: 9811819
Proc Natl Acad Sci U S A. 2013 Oct 29;110(44):17904-9
pubmed: 24101461
PLoS One. 2006 Dec 20;1:e85
pubmed: 17183716
Mol Endocrinol. 2005 Jun;19(6):1418-28
pubmed: 15914711
Nature. 2010 Mar 25;464(7288):592-6
pubmed: 20228792
Wiley Interdiscip Rev Dev Biol. 2013 Jan-Feb;2(1):31-45
pubmed: 23799629
PLoS One. 2014 Sep 04;9(9):e106689
pubmed: 25188499
Nucleic Acids Res. 1999 Jan 15;27(2):573-80
pubmed: 9862982
Dev Biol. 2009 Jun 1;330(1):186-99
pubmed: 19217898
Bioinformatics. 2015 Oct 1;31(19):3210-2
pubmed: 26059717
Organogenesis. 2008 Apr;4(2):68-75
pubmed: 19279717
J Biol Chem. 2011 Sep 23;286(38):33322-34
pubmed: 21803772
Mar Drugs. 2013 Feb 22;11(2):523-50
pubmed: 23434796
Trends Genet. 2007 Nov;23(11):533-9
pubmed: 18029048
Mar Drugs. 2012 Aug;10(8):1812-1851
pubmed: 23015776
Nat Rev Genet. 2016 Jul;17(7):422-33
pubmed: 27265362
Mar Pollut Bull. 2010 Jul;60(7):954-63
pubmed: 20553695
Curr Biol. 2006 May 9;16(9):920-6
pubmed: 16563766
Methods Enzymol. 1995;248:183-228
pubmed: 7674922
Front Cell Dev Biol. 2017 Jan 23;4:157
pubmed: 28168188
Genome Res. 2003 Nov;13(11):2498-504
pubmed: 14597658
Bioinformatics. 2009 May 1;25(9):1105-11
pubmed: 19289445
Dev Biol. 2005 Jun 1;282(1):14-26
pubmed: 15936326
Genome Res. 2003 Sep;13(9):2178-89
pubmed: 12952885
Comp Biochem Physiol B Biochem Mol Biol. 2002 Jul;132(3):571-8
pubmed: 12091102
Toxins (Basel). 2013 Dec 27;6(1):108-51
pubmed: 24379089
Protein Sci. 1995 Jul;4(7):1247-61
pubmed: 7670368
Mol Phylogenet Evol. 2012 Jan;62(1):329-45
pubmed: 22040765
Bioinformatics. 2006 Dec 1;22(23):2971-2
pubmed: 17021158
Curr Protoc Bioinformatics. 2009 Mar;Chapter 4:4.10.1-4.10.14
pubmed: 19274634
BMC Bioinformatics. 2010 Aug 18;11:431
pubmed: 20718988
Syst Biol. 2006 Feb;55(1):97-115
pubmed: 16507527
BMC Biol. 2019 Mar 29;17(1):28
pubmed: 30925871
BMC Genomics. 2015 May 27;16:407
pubmed: 26014501
BMC Genomics. 2010 May 16;11:308
pubmed: 20470436
Nature. 2012 Jul 12;487(7406):231-4
pubmed: 22763458
Nature. 2005 Jan 13;433(7022):156-60
pubmed: 15650739
Bioinformatics. 2009 Aug 1;25(15):1972-3
pubmed: 19505945
Bioinformatics. 2001 Sep;17(9):847-8
pubmed: 11590104
Dev Genes Evol. 1998 Jul;208(5):267-73
pubmed: 9683742
PLoS One. 2010 Mar 10;5(3):e9490
pubmed: 20224823
Bioinformatics. 2006 Nov 1;22(21):2688-90
pubmed: 16928733
Development. 2012 Mar;139(5):843-58
pubmed: 22318625
Nat Rev Mol Cell Biol. 2015 Feb;16(2):110-23
pubmed: 25560970
Evol Dev. 2010 Jul-Aug;12(4):404-15
pubmed: 20618436
Comp Biochem Physiol B Biochem Mol Biol. 2004 Dec;139(4):731-5
pubmed: 15581805
Science. 2004 May 28;304(5675):1335-7
pubmed: 15131263
Toxicon. 2011 Apr;57(5):721-9
pubmed: 21333668
IUBMB Life. 2000 Dec;50(6):365-70
pubmed: 11327309
Bioinformatics. 2011 Mar 15;27(6):764-70
pubmed: 21217122
J Exp Zool B Mol Dev Evol. 2007 Jul 15;308(4):494-506
pubmed: 17377951
Mol Biol Evol. 2013 Aug;30(8):1987-97
pubmed: 23709260
Nat Protoc. 2013 Aug;8(8):1494-512
pubmed: 23845962
Bioinformatics. 2009 Aug 15;25(16):2078-9
pubmed: 19505943
Nat Methods. 2013 Jun;10(6):563-9
pubmed: 23644548
Mol Biol Evol. 2016 Jul;33(7):1870-4
pubmed: 27004904
Brief Bioinform. 2013 Nov;14(6):671-83
pubmed: 22988256
BMC Bioinformatics. 2009 Dec 15;10:421
pubmed: 20003500
Nucleic Acids Res. 2004 Mar 19;32(5):1792-7
pubmed: 15034147
Toxicon. 2012 Sep 15;60(4):551-7
pubmed: 22465017
BMC Evol Biol. 2004 Jun 28;4:19
pubmed: 15222899
Gene. 2000 Mar 21;245(2):291-8
pubmed: 10717480
Nature. 2006 Aug 10;442(7103):684-7
pubmed: 16900199
Trends Genet. 2001 Aug;17(8):443
pubmed: 11491115