The assessment of pressure-volume relationship during exercise stress echocardiography predicts left ventricular remodeling and eccentric hypertrophy in patients with chronic heart failure.
Aged
Echocardiography, Stress
/ methods
Female
Heart Failure
/ diagnosis
Heart Ventricles
/ diagnostic imaging
Humans
Hypertrophy, Left Ventricular
/ complications
Male
Middle Aged
Stroke Volume
/ physiology
Ventricular Function, Left
/ physiology
Ventricular Pressure
/ physiology
Ventricular Remodeling
/ physiology
Heart failure
Left ventricular remodeling
Stress echocardiography
Journal
Cardiovascular ultrasound
ISSN: 1476-7120
Titre abrégé: Cardiovasc Ultrasound
Pays: England
ID NLM: 101159952
Informations de publication
Date de publication:
06 Apr 2019
06 Apr 2019
Historique:
received:
18
02
2019
accepted:
26
03
2019
entrez:
8
4
2019
pubmed:
8
4
2019
medline:
18
12
2019
Statut:
epublish
Résumé
The contractile response of patients with heart failure (HF) may be assessed by exercise stress echocardiography (ESE)-derived indexes. We sought to test whether ESE parameters are useful to identify the risk of adverse left ventricular (LV) remodeling in patients with chronic HF and reduced or mildly reduced LV ejection fraction (EF). We enrolled 155 stabilized patients (age: 62 ± 11 years, 17% female, coronary artery disease 47%) with chronic HF, LV EF ≤50% and LV end-diastolic volume index > 75 ml/m Adverse LV remodeling was detected in 34 (22%) patients. After adjustment for clinical, biochemical and echocardiographic data, peak ESPVR resulted in the most powerful independent predictor of adverse LV remodeling (OR: 12.5 [95% CI 4.5-33]; p < 0.0001) followed by ischemic aetiology (OR: 2.64 [95% 1.04-6.73]; p = 0.04). In patients with HF and reduced or mildly reduced EF, a compromised ESE-derived peak ESPVR, that reflects impaired LV contractility, resulted to be the most powerful predictor of adverse LV remodeling.
Sections du résumé
BACKGROUND
BACKGROUND
The contractile response of patients with heart failure (HF) may be assessed by exercise stress echocardiography (ESE)-derived indexes. We sought to test whether ESE parameters are useful to identify the risk of adverse left ventricular (LV) remodeling in patients with chronic HF and reduced or mildly reduced LV ejection fraction (EF).
METHODS
METHODS
We enrolled 155 stabilized patients (age: 62 ± 11 years, 17% female, coronary artery disease 47%) with chronic HF, LV EF ≤50% and LV end-diastolic volume index > 75 ml/m
RESULTS
RESULTS
Adverse LV remodeling was detected in 34 (22%) patients. After adjustment for clinical, biochemical and echocardiographic data, peak ESPVR resulted in the most powerful independent predictor of adverse LV remodeling (OR: 12.5 [95% CI 4.5-33]; p < 0.0001) followed by ischemic aetiology (OR: 2.64 [95% 1.04-6.73]; p = 0.04).
CONCLUSION
CONCLUSIONS
In patients with HF and reduced or mildly reduced EF, a compromised ESE-derived peak ESPVR, that reflects impaired LV contractility, resulted to be the most powerful predictor of adverse LV remodeling.
Identifiants
pubmed: 30954080
doi: 10.1186/s12947-019-0157-z
pii: 10.1186/s12947-019-0157-z
pmc: PMC6451304
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
6Références
JAMA Netw Open. 2018 Aug 3;1(4):e181456
pubmed: 30646130
JACC Cardiovasc Imaging. 2011 Jan;4(1):98-108
pubmed: 21232712
J Am Soc Echocardiogr. 2009 Apr;22(4):354-60
pubmed: 19269783
Eur Heart J. 2000 Jun;21(11):927-34
pubmed: 10806017
Circ Res. 1962 Mar;10:250-8
pubmed: 14472098
Med Sci Monit. 2012 May;18(5):CR276-81
pubmed: 22534706
Eur Heart J Cardiovasc Imaging. 2016 Nov;17(11):1191-1229
pubmed: 27880640
J Am Soc Echocardiogr. 2003 Jun;16(6):646-55
pubmed: 12778025
Lancet. 2006 Jan 28;367(9507):356-67
pubmed: 16443044
Am J Cardiol. 2008 Aug 15;102(4):459-62
pubmed: 18678306
Eur J Echocardiogr. 2004 Jun;5(3):162-4
pubmed: 15147655
Eur Heart J. 2005 Nov;26(22):2404-12
pubmed: 16105848
Am J Physiol. 1991 Apr;260(4 Pt 2):H1379-84
pubmed: 1826414
Eur J Heart Fail. 2005 Mar 2;7(2):173-81
pubmed: 15701463
Circ Res. 1974 Aug;35(2):suppl II:64-70
pubmed: 4276490
Heart Fail Clin. 2019 Apr;15(2):159-166
pubmed: 30832808
J Am Soc Hypertens. 2017 Jul;11(7):412-419
pubmed: 28619598
J Am Coll Cardiol. 2000 Apr;35(5):1237-44
pubmed: 10758966
Circulation. 1987 Jul;76(1):44-51
pubmed: 3594774
J Am Coll Cardiol. 1991 Dec;18(7):1794-803
pubmed: 1960332
J Am Soc Echocardiogr. 2016 Apr;29(4):277-314
pubmed: 27037982
Am Heart J. 2011 Jun;161(6):1088-95
pubmed: 21641355
Circ Heart Fail. 2008 May;1(1):63-71
pubmed: 19808272
Eur Heart J. 2009 Apr;30(8):950-8
pubmed: 19269987
J Card Fail. 2003 Feb;9(1):1-3
pubmed: 12612866
J Am Coll Cardiol. 2011 Oct 18;58(17):1733-40
pubmed: 21996383
Circulation. 1990 Apr;81(4):1161-72
pubmed: 2138525
Eur J Heart Fail. 2002 Jan;4(1):49-61
pubmed: 11812665
Circulation. 1994 Jan;89(1):151-63
pubmed: 8281642
Cardiovasc Ultrasound. 2005 Sep 08;3:27
pubmed: 16150150
J Am Coll Cardiol. 2000 Mar 1;35(3):569-82
pubmed: 10716457
J Am Soc Echocardiogr. 2015 Jan;28(1):1-39.e14
pubmed: 25559473
Circulation. 2002 Oct 29;106(18):2351-7
pubmed: 12403666
J Am Soc Echocardiogr. 2010 Dec;23(12):1259-65
pubmed: 20889309
Eur Heart J. 2014 Apr;35(16):1033-40
pubmed: 24126880