IL-17 metabolically reprograms activated fibroblastic reticular cells for proliferation and survival.
Animals
Antibody Formation
/ genetics
Cell Proliferation
Cell Survival
/ genetics
Cells, Cultured
Colitis
/ genetics
Encephalomyelitis, Autoimmune, Experimental
/ genetics
Fibroblasts
/ immunology
Interleukin-17
/ genetics
Lymph Nodes
/ cytology
Mice, Inbred C57BL
Mice, Knockout
Mice, Transgenic
Receptors, Interleukin-17
/ genetics
Stromal Cells
/ immunology
Th17 Cells
/ immunology
Journal
Nature immunology
ISSN: 1529-2916
Titre abrégé: Nat Immunol
Pays: United States
ID NLM: 100941354
Informations de publication
Date de publication:
05 2019
05 2019
Historique:
received:
18
01
2018
accepted:
26
02
2019
pubmed:
10
4
2019
medline:
30
4
2019
entrez:
10
4
2019
Statut:
ppublish
Résumé
Lymph-node (LN) stromal cell populations expand during the inflammation that accompanies T cell activation. Interleukin-17 (IL-17)-producing helper T cells (T
Identifiants
pubmed: 30962593
doi: 10.1038/s41590-019-0367-4
pii: 10.1038/s41590-019-0367-4
pmc: PMC6519710
mid: NIHMS1024864
doi:
Substances chimiques
Interleukin-17
0
Receptors, Interleukin-17
0
Types de publication
Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
534-545Subventions
Organisme : NIAID NIH HHS
ID : DP2 AI136598
Pays : United States
Organisme : NIDCR NIH HHS
ID : R01 DE022550
Pays : United States
Organisme : NIDCR NIH HHS
ID : R37 DE022550
Pays : United States
Organisme : NIDDK NIH HHS
ID : R01 DK104680
Pays : United States
Organisme : NIH HHS
ID : DK104680
Pays : United States
Organisme : NIDCR NIH HHS
ID : R01 DE023815
Pays : United States
Organisme : NIH HHS
ID : AI110822
Pays : United States
Organisme : NIH HHS
ID : AI107825
Pays : United States
Organisme : NIH HHS
ID : DP2AI136598
Pays : United States
Organisme : NIH HHS
ID : AI128991
Pays : United States
Organisme : NIAID NIH HHS
ID : R01 AI107825
Pays : United States
Organisme : NIAID NIH HHS
ID : R01 AI110822
Pays : United States
Organisme : NIAID NIH HHS
ID : T32 AI089443
Pays : United States
Organisme : NIAID NIH HHS
ID : R56 AI110822
Pays : United States
Organisme : NIH HHS
ID : DE022550
Pays : United States
Organisme : NIAID NIH HHS
ID : R21 AI128991
Pays : United States
Organisme : NIAID NIH HHS
ID : R01 AI142354
Pays : United States
Organisme : NIH HHS
ID : DE023815
Pays : United States
Commentaires et corrections
Type : CommentIn
Type : CommentIn
Références
Patel, D. D. & Kuchroo, V. K. Th17 cell pathway in human immunity: lessons from genetics andtherapeutic interventions. Immunity 43, 1040–1051 (2015).
doi: 10.1016/j.immuni.2015.12.003
Gaffen, S. L., Jain, R., Garg, A. V. & Cua, D. J. The IL-23-IL-17 immune axis: from mechanisms to therapeutic testing. Nat. Rev. Immunol. 14, 585–600 (2014).
doi: 10.1038/nri3707
Lee, J. S. et al. Interleukin-23-independent IL-17 production regulates intestinal epithelialpermeability. Immunity 43, 727–738 (2015).
doi: 10.1016/j.immuni.2015.09.003
Maxwell, J. R. et al. Differential roles for interleukin-23 and interleukin-17 in intestinal immunoregulation. Immunity 43, 739–750 (2015).
doi: 10.1016/j.immuni.2015.08.019
Grogan, J. L. & Ouyang, W. A role for Th17 cells in the regulation of tertiary lymphoid follicles. Eur. J. Immunol. 42, 2255–2262 (2012).
doi: 10.1002/eji.201242656
Pikor, N. B. et al. Integration of Th17- and lymphotoxin-derived signals initiates meningeal-resident stromal cell remodeling to propagate neuroinflammation. Immunity 43, 1160–1173 (2015).
doi: 10.1016/j.immuni.2015.11.010
Brown, F. D. & Turley, S. J. Fibroblastic reticular cells: organization and regulation of the T lymphocyte life cycle. J. Immunol. 194, 1389–1394 (2015).
doi: 10.4049/jimmunol.1402520
Rodda, L. B. et al. Single-cell RNA sequencing of lymph node stromal cells reveals niche-associated heterogeneity. Immunity 48, 1014–1028 e1016 (2018).
doi: 10.1016/j.immuni.2018.04.006
Huang, H. Y. et al. Identification of a new subset of lymph node stromal cells involved in regulating plasma cell homeostasis. Proc. Natl Acad. Sci. USA 115, E6826–E6835 (2018).
doi: 10.1073/pnas.1712628115
Cremasco, V. et al. B cell homeostasis and follicle confines are governed by fibroblastic reticular cells. Nat. Immunol. 15, 973–981 (2014).
doi: 10.1038/ni.2965
Chai, Q. et al. Maturation of lymph node fibroblastic reticular cells from myofibroblastic precursors is critical for antiviral immunity. Immunity 38, 1013–1024 (2013).
doi: 10.1016/j.immuni.2013.03.012
Zeng, M. et al. Cumulative mechanisms of lymphoid tissue fibrosis and T cell depletion in HIV-1 and SIV infections. J. Clin. Invest. 121, 998–1008 (2011).
doi: 10.1172/JCI45157
Estes, J. D. et al. Antifibrotic therapy in simian immunodeficiency virus infection preserves CD4+ T-cell populations and improves immune reconstitution with antiretroviral therapy. J. Infect. Dis. 211, 744–754 (2015).
doi: 10.1093/infdis/jiu519
Kityo, C. et al. Lymphoid tissue fibrosis is associated with impaired vaccine responses. J. Clin. Invest. 128, 2763–2773 (2018).
doi: 10.1172/JCI97377
Khan, O. et al. Regulation of T cell priming by lymphoid stroma. PLoS ONE 6, e26138 (2011).
doi: 10.1371/journal.pone.0026138
Lukacs-Kornek, V. et al. Regulated release of nitric oxide by nonhematopoietic stroma controls expansion of the activated T cell pool in lymph nodes. Nat. Immunol. 12, 1096–1104 (2011).
doi: 10.1038/ni.2112
Siegert, S. et al. Fibroblastic reticular cells from lymph nodes attenuate T cell expansion by producing nitric oxide. PLoS ONE 6, e27618 (2011).
doi: 10.1371/journal.pone.0027618
Gil-Cruz, C. et al. Fibroblastic reticular cells regulate intestinal inflammation via IL-15-mediated control of group 1 ILCs. Nat. Immunol. 17, 1388–1396 (2016).
doi: 10.1038/ni.3566
Fletcher, A. L. et al. Lymph node fibroblastic reticular cells directly present peripheral tissue antigen under steady-state and inflammatory conditions. J. Exp. Med. 207, 689–697 (2010).
doi: 10.1084/jem.20092642
Dubrot, J. et al. Lymph node stromal cells acquire peptide-MHCII complexes from dendritic cells and induce antigen-specific CD4(+) T cell tolerance. J. Exp. Med. 211, 1153–1166 (2014).
doi: 10.1084/jem.20132000
Cyster, J. G. Chemokines, sphingosine-1-phosphate, and cell migration in secondary lymphoid organs. Annu. Rev. Immunol. 23, 127–159 (2005).
doi: 10.1146/annurev.immunol.23.021704.115628
Astarita, J. L. et al. The CLEC-2-podoplanin axis controls the contractility of fibroblastic reticular cells and lymph node microarchitecture. Nat. Immunol. 16, 75–84 (2015).
doi: 10.1038/ni.3035
Chyou, S. et al. Coordinated regulation of lymph node vascular-stromal growth first by CD11c+ cells and then by T and B cells. J. Immunol. 187, 5558–5567 (2011).
doi: 10.4049/jimmunol.1101724
Yang, C. Y. et al. Trapping of naive lymphocytes triggers rapid growth and remodeling of the fibroblast network in reactive murine lymph nodes. Proc. Natl Acad. Sci. USA 111, E109–E118 (2014).
doi: 10.1073/pnas.1312585111
Katakai, T., Hara, T., Sugai, M., Gonda, H. & Shimizu, A. Lymph node fibroblastic reticular cells construct the stromal reticulum via contact with lymphocytes. J. Exp. Med. 200, 783–795 (2004).
doi: 10.1084/jem.20040254
Teesalu, T., Hinkkanen, A. E. & Vaheri, A. Coordinated induction of extracellular proteolysis systems during experimental autoimmune encephalomyelitis in mice. Am. J. Pathol. 159, 2227–2237 (2001).
doi: 10.1016/S0002-9440(10)63073-8
Han, M. H. et al. Proteomic analysis of active multiple sclerosis lesions reveals therapeutic targets. Nature 451, 1076–1081 (2008).
doi: 10.1038/nature06559
McGeachy, M. J. et al. The interleukin 23 receptor is essential for the terminal differentiation of interleukin 17-producing effector T helper cells in vivo. Nat. Immunol. 10, 314–324 (2009).
doi: 10.1038/ni.1698
Garg, A. V. et al. MCPIP1 endoribonuclease activity negatively regulates interleukin-17-mediated signaling and inflammation. Immunity 43, 475–487 (2015).
doi: 10.1016/j.immuni.2015.07.021
Khader, S. A., Gaffen, S. L. & Kolls, J. K. Th17 cells at the crossroads of innate and adaptive immunity against infectious diseases at the mucosa. Mucosal Immunol. 2, 403–411 (2009).
doi: 10.1038/mi.2009.100
Chung, J. et al. Fibroblastic niches prime T cell alloimmunity through delta-like notch ligands. J. Clin. Invest. 127, 1574–1588 (2017).
doi: 10.1172/JCI89535
Amatya, N., Garg, A. V. & Gaffen, S. L. IL-17 signaling: the yin and the yang. Trends Immunol. 38, 310–322 (2017).
doi: 10.1016/j.it.2017.01.006
Coller, H. A., Sang, L. & Roberts, J. M. A new description of cellular quiescence. PLoS Biol. 4, e83 (2006).
doi: 10.1371/journal.pbio.0040083
Okoshi, R. et al. Activation of AMP-activated protein kinase induces p53-dependent apoptotic cell death in response to energetic stress. J. Biol. Chem. 283, 3979–3987 (2008).
doi: 10.1074/jbc.M705232200
Loberg, R. D., Vesely, E. & Brosius, F. C. III. Enhanced glycogen synthase kinase-3 beta activity mediates hypoxia-induced apoptosis of vascular smooth muscle cells and is prevented by glucose transport and metabolism. J. Biol. Chem. 277, 41667–41673 (2002).
doi: 10.1074/jbc.M206405200
Yamamoto, M. et al. Regulation of Toll/IL-1-receptor-mediated gene expression by the inducible nuclear protein IκBζ. Nature 430, 218–222 (2004).
doi: 10.1038/nature02738
Ha, H. L. et al. IL-17 drives psoriatic inflammation via distinct, target cell-specific mechanisms. Proc. Natl Acad. Sci. USA 111, E3422–E3431 (2014).
doi: 10.1073/pnas.1400513111
Wu, L. et al. A novel IL-17 signaling pathway controlling keratinocyte proliferation and tumorigenesis via the TRAF4-ERK5 axis. J. Exp. Med. 212, 1571–1587 (2015).
doi: 10.1084/jem.20150204
Wang, C. et al. IL-17 induced NOTCH1 activation in oligodendrocyte progenitor cells enhances proliferation and inflammatory gene expression. Nat. Commun. 8, 15508 (2017).
doi: 10.1038/ncomms15508
Datta, S. K. et al. Mucosal adjuvant activity of cholera toxin requires Th17 cells and protects against inhalation anthrax. Proc. Natl Acad. Sci. USA 107, 10638–10643 (2010).
doi: 10.1073/pnas.1002348107
Hsu, H. C. et al. Interleukin 17-producing T helper cells and interleukin 17 orchestrate autoreactive germinal center development in autoimmune BXD2 mice. Nat. Immunol. 9, 166–175 (2008).
doi: 10.1038/ni1552
Mitsdoerffer, M. et al. Proinflammatory T helper type 17 cells are effective B-cell helpers. Proc. Natl Acad. Sci. USA 107, 14292–14297 (2010).
doi: 10.1073/pnas.1009234107
Hirota, K. et al. Plasticity of Th17 cells in Peyer’s patches is responsible for the induction of T cell-dependent IgA responses. Nat. Immunol. 14, 372–379 (2013).
doi: 10.1038/ni.2552
Ding, Y. et al. IL-17RA is essential for optimal localization of follicular Th cells in the germinal center light zone to promote autoantibody-producing B cells. J. Immunol. 191, 1614–1624 (2013).
doi: 10.4049/jimmunol.1300479
Sonder, S. U. et al. IL-17-induced NF-kappaB activation via CIKS/Act1: physiologic significance and signaling mechanisms. J. Biol. Chem. 286, 12881–12890 (2011).
doi: 10.1074/jbc.M110.199547
Okuma, A. et al. Enhanced apoptosis by disruption of the STAT3-IkappaB-zeta signaling pathway in epithelial cells induces Sjogren’s syndrome-like autoimmune disease. Immunity 38, 450–460 (2013).
doi: 10.1016/j.immuni.2012.11.016
Nogai, H. et al. IkappaB-zeta controls the constitutive NF-kappaB target gene network and survival of ABC DLBCL. Blood 122, 2242–2250 (2013).
doi: 10.1182/blood-2013-06-508028
Mauro, C. et al. NF-κB controls energy homeostasis and metabolic adaptation by upregulating mitochondrial respiration. Nat. Cell. Biol. 13, 1272–1279 (2011).
doi: 10.1038/ncb2324
Johnson, R. F., Witzel, I. I. & Perkins, N. D. p53-dependent regulation of mitochondrial energy production by the RelA subunit of NF-kappaB. Cancer Res. 71, 5588–5597 (2011).
doi: 10.1158/0008-5472.CAN-10-4252
Sommermann, T. G., O’Neill, K., Plas, D. R. & Cahir-McFarland, E. IKKbeta and NF-kappaB transcription govern lymphoma cell survival through AKT-induced plasma membrane trafficking of GLUT1. Cancer Res. 71, 7291–7300 (2011).
doi: 10.1158/0008-5472.CAN-11-1715
Kumar, P. et al. Intestinal interleukin-17 receptor signaling mediates reciprocal control of the gut microbiota and autoimmune inflammation. Immunity 44, 659–671 (2016).
doi: 10.1016/j.immuni.2016.02.007
Claudio, E. et al. The adaptor protein CIKS/Act1 is essential for IL-25-mediated allergic airway inflammation. J. Immunol. 182, 1617–1630 (2009).
doi: 10.4049/jimmunol.182.3.1617
Awasthi, A. et al. Cutting edge: IL-23 receptor gfp reporter mice reveal distinct populations of IL-17-producing cells. J. Immunol. 182, 5904–5908 (2009).
doi: 10.4049/jimmunol.0900732
Jin, Z., Liang, J., Wang, J. & Kolattukudy, P. E. MCP-induced protein 1 mediates the minocycline-induced neuroprotection against cerebral ischemia/reperfusion injury in vitro and in vivo. J. Neuroinflamm. 12, 39 (2015).
doi: 10.1186/s12974-015-0264-1
Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).
doi: 10.1093/bioinformatics/btu170
Trapnell, C. et al. Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat. Protoc. 7, 562–578 (2012).
doi: 10.1038/nprot.2012.016