Differentiating SGBS adipocytes respond to PPARγ stimulation, irisin and BMP7 by functional browning and beige characteristics.
Adipocytes, Beige
/ cytology
Adipocytes, Brown
/ cytology
Adipocytes, White
/ cytology
Adipogenesis
/ physiology
Adipose Tissue, Brown
/ cytology
Adipose Tissue, White
/ cytology
Arrhythmias, Cardiac
Bone Morphogenetic Protein 7
/ metabolism
Cell Differentiation
/ physiology
Cells, Cultured
Fibronectins
/ metabolism
Genetic Diseases, X-Linked
Gigantism
Heart Defects, Congenital
Humans
Intellectual Disability
Mitochondria
/ metabolism
Obesity
/ pathology
PPAR gamma
/ metabolism
T-Box Domain Proteins
/ metabolism
Thermogenesis
/ physiology
Uncoupling Protein 1
/ metabolism
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
09 04 2019
09 04 2019
Historique:
received:
26
11
2018
accepted:
26
03
2019
entrez:
11
4
2019
pubmed:
11
4
2019
medline:
7
10
2020
Statut:
epublish
Résumé
Brown and beige adipocytes are enriched in mitochondria with uncoupling protein-1 (UCP1) to generate heat instead of ATP contributing to healthy energy balance. There are few human cellular models to reveal regulatory networks in adipocyte browning and key targets for enhancing thermogenesis in obesity. The Simpson-Golabi-Behmel syndrome (SGBS) preadipocyte line has been a useful tool to study human adipocyte biology. Here we report that SGBS cells, which are comparable to subcutaneous adipose-derived stem cells, carry an FTO risk allele. Upon sustained PPARγ stimulation or irisin (a myokine released in response to exercise) treatment, SGBS cells differentiated into beige adipocytes exhibiting multilocular lipid droplets, high UCP1 content with induction of typical browning genes (Cidea, Elovl3) and the beige marker Tbx1. The autocrine mediator BMP7 led to moderate browning with the upregulation of the classical brown marker Zic1 instead of Tbx1. Thermogenesis potential resulted from PPARγ stimulation, irisin and BMP7 can be activated in UCP1-dependent and the beige specific, creatine phosphate cycle mediated way. The beige phenotype, maintained under long-term (28 days) conditions, was partially reversed by withdrawal of PPARγ ligand. Thus, SGBS cells can serve as a cellular model for both white and sustainable beige adipocyte differentiation and function.
Identifiants
pubmed: 30967578
doi: 10.1038/s41598-019-42256-0
pii: 10.1038/s41598-019-42256-0
pmc: PMC6456729
doi:
Substances chimiques
BMP7 protein, human
0
Bone Morphogenetic Protein 7
0
FNDC5 protein, human
0
Fibronectins
0
PPAR gamma
0
PPARG protein, human
0
T-Box Domain Proteins
0
TBX1 protein, human
0
UCP1 protein, human
0
Uncoupling Protein 1
0
ZIC1 protein, human
0
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
5823Références
Cell Metab. 2015 Oct 6;22(4):734-740
pubmed: 26278051
Cell Metab. 2015 Oct 6;22(4):546-59
pubmed: 26445512
Mol Cell Endocrinol. 2017 Mar 5;443:106-113
pubmed: 28088466
Front Endocrinol (Lausanne). 2012 Feb 02;3:13
pubmed: 22649407
Cell Metab. 2017 Oct 3;26(4):693
pubmed: 28978428
Nat Med. 2015 Jul;21(7):760-8
pubmed: 26076036
Cell Metab. 2012 Mar 7;15(3):395-404
pubmed: 22405074
PLoS One. 2012;7(11):e49452
pubmed: 23166672
J Transl Med. 2015 Apr 30;13:135
pubmed: 25925588
PLoS Genet. 2007 Jul;3(7):e115
pubmed: 17658951
Nature. 2012 Jan 11;481(7382):463-8
pubmed: 22237023
Nat Med. 2013 May;19(5):631-4
pubmed: 23603813
Science. 2007 May 11;316(5826):889-94
pubmed: 17434869
Cell Rep. 2018 Oct 16;25(3):784-797.e4
pubmed: 30332656
Cell Metab. 2014 May 6;19(5):810-20
pubmed: 24709624
Transl Psychiatry. 2016 Nov 29;6(11):e963
pubmed: 27898069
PLoS One. 2016 Jun 20;11(6):e0157644
pubmed: 27322180
Nat Med. 2013 May;19(5):635-9
pubmed: 23603815
Cell. 2018 Dec 13;175(7):1756-1768.e17
pubmed: 30550785
Endocrinology. 2013 Sep;154(9):3141-51
pubmed: 23751871
Sci Rep. 2015 Jul 27;5:12540
pubmed: 26212086
Stem Cells. 2014 Feb;32(2):572-81
pubmed: 24420906
Cell Metab. 2013 May 7;17(5):798-805
pubmed: 23663743
Mol Cell Biochem. 2015 Oct;408(1-2):115-22
pubmed: 26112903
Cell. 2012 Jul 20;150(2):366-76
pubmed: 22796012
Am J Physiol Endocrinol Metab. 2012 Jan 1;302(1):E19-31
pubmed: 21828341
Nature. 2008 Aug 21;454(7207):1000-4
pubmed: 18719589
Obes Facts. 2008;1(4):184-9
pubmed: 20054179
Science. 2010 May 28;328(5982):1113-4
pubmed: 20448151
Cell Metab. 2014 Feb 4;19(2):302-9
pubmed: 24506871
N Engl J Med. 2015 Sep 3;373(10):895-907
pubmed: 26287746
Nature. 2013 Mar 21;495(7441):379-83
pubmed: 23485971
J Clin Invest. 2012 Mar;122(3):1022-36
pubmed: 22307324
Biochim Biophys Acta. 2007 Dec;1773(12):1701-20
pubmed: 18240421
J Cell Sci. 1997 Apr;110 ( Pt 7):801-7
pubmed: 9133667
Cardiovasc Res. 2011 Dec 1;92(3):430-8
pubmed: 21921080
Proc Natl Acad Sci U S A. 2007 Mar 13;104(11):4401-6
pubmed: 17360536
PLoS One. 2013 Sep 11;8(9):e73680
pubmed: 24040023
Sci Rep. 2017 Jun 22;7(1):4031
pubmed: 28642596
Clin Transl Oncol. 2012 Oct;14(10):774-82
pubmed: 22855155
J Cell Sci. 2003 Jul 15;116(Pt 14):2957-66
pubmed: 12783990
Nat Med. 2015 Apr;21(4):389-94
pubmed: 25774848
Endocrinology. 1997 Jan;138(1):405-13
pubmed: 8977430
J Biol Chem. 2010 Mar 5;285(10):7153-64
pubmed: 20028987
Int J Obes (Lond). 2014 Sep;38(9):1221-7
pubmed: 24352293
Cell. 2012 Oct 12;151(2):400-13
pubmed: 23063128
Stem Cells. 2009 Nov;27(11):2753-60
pubmed: 19697348
Cell. 2015 Oct 22;163(3):643-55
pubmed: 26496606
Int J Obes Relat Metab Disord. 2001 Jan;25(1):8-15
pubmed: 11244452
Diabetes. 2014 Feb;63(2):514-25
pubmed: 24150604
Cell. 2016 Jul 14;166(2):424-435
pubmed: 27374330
Biochem Biophys Res Commun. 2014 Aug 8;450(4):1383-9
pubmed: 25019983
Genes Dis. 2015 Jun;2(2):164-172
pubmed: 26491708
Cell Rep. 2018 Jun 5;23(10):3112-3125
pubmed: 29874595
J Cell Sci. 1992 Dec;103 ( Pt 4):931-42
pubmed: 1362571
Cell. 2014 Jan 16;156(1-2):20-44
pubmed: 24439368