Visualization of clustered protocadherin neuronal self-recognition complexes.


Journal

Nature
ISSN: 1476-4687
Titre abrégé: Nature
Pays: England
ID NLM: 0410462

Informations de publication

Date de publication:
05 2019
Historique:
received: 03 07 2018
accepted: 07 03 2019
pubmed: 12 4 2019
medline: 22 1 2020
entrez: 12 4 2019
Statut: ppublish

Résumé

Neurite self-recognition and avoidance are fundamental properties of all nervous systems

Identifiants

pubmed: 30971825
doi: 10.1038/s41586-019-1089-3
pii: 10.1038/s41586-019-1089-3
pmc: PMC6736547
mid: NIHMS1023915
doi:

Substances chimiques

Cadherins 0
Liposomes 0
Pcdh1 protein, mouse 0
Protocadherins 0

Types de publication

Journal Article Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, Non-P.H.S.

Langues

eng

Sous-ensembles de citation

IM

Pagination

280-283

Subventions

Organisme : NIGMS NIH HHS
ID : F32 GM128303
Pays : United States
Organisme : NIGMS NIH HHS
ID : P41 GM103310
Pays : United States
Organisme : NIMH NIH HHS
ID : R01 MH114817
Pays : United States
Organisme : NIGMS NIH HHS
ID : T32 GM087237
Pays : United States
Organisme : NIGMS NIH HHS
ID : R01 GM081871
Pays : United States

Références

Zipursky, S. L. & Grueber, W. B. The molecular basis of self-avoidance. Annu. Rev. Neurosci. 36, 547–568 (2013).
doi: 10.1146/annurev-neuro-062111-150414 pubmed: 23841842 pmcid: 23841842
Lefebvre, J. L., Kostadinov, D., Chen, W. V., Maniatis, T. & Sanes, J. R. Protocadherins mediate dendritic self-avoidance in the mammalian nervous system. Nature 488, 517–521 (2012).
doi: 10.1038/nature11305 pubmed: 22842903 pmcid: 22842903
Molumby, M. J., Keeler, A. B. & Weiner, J. A. Homophilic protocadherin cell–cell interactions promote dendrite complexity. Cell Reports 15, 1037–1050 (2016).
doi: 10.1016/j.celrep.2016.03.093 pubmed: 27117416 pmcid: 27117416
Kostadinov, D. & Sanes, J. R. Protocadherin-dependent dendritic self-avoidance regulates neural connectivity and circuit function. eLife 4, e08964 (2015).
doi: 10.7554/eLife.08964
Mountoufaris, G. et al. Multicluster Pcdh diversity is required for mouse olfactory neural circuit assembly. Science 356, 411–414 (2017).
doi: 10.1126/science.aai8801 pubmed: 28450637 pmcid: 28450637
Wu, Q. & Maniatis, T. A striking organization of a large family of human neural cadherin-like cell adhesion genes. Cell 97, 779–790 (1999).
doi: 10.1016/S0092-8674(00)80789-8 pubmed: 10380929 pmcid: 10380929
Wu, Q. et al. Comparative DNA sequence analysis of mouse and human protocadherin gene clusters. Genome Res. 11, 389–404 (2001).
doi: 10.1101/gr.167301 pubmed: 11230163 pmcid: 11230163
Zipursky, S. L. & Sanes, J. R. Chemoaffinity revisited: dscams, protocadherins, and neural circuit assembly. Cell 143, 343–353 (2010).
doi: 10.1016/j.cell.2010.10.009 pubmed: 21029858 pmcid: 21029858
Yagi, T. Molecular codes for neuronal individuality and cell assembly in the brain. Front. Mol. Neurosci. 5, 45 (2012).
doi: 10.3389/fnmol.2012.00045 pubmed: 22518100 pmcid: 22518100
Thu, C. A. et al. Single-cell identity generated by combinatorial homophilic interactions between α, β, and γ protocadherins. Cell 158, 1045–1059 (2014).
doi: 10.1016/j.cell.2014.07.012 pubmed: 25171406 pmcid: 25171406
Rubinstein, R., Goodman, K. M., Maniatis, T., Shapiro, L. & Honig, B. Structural origins of clustered protocadherin-mediated neuronal barcoding. Semin. Cell Dev. Biol. 69, 140–150 (2017).
doi: 10.1016/j.semcdb.2017.07.023 pubmed: 28743640 pmcid: 28743640
Toyoda, S. et al. Developmental epigenetic modification regulates stochastic expression of clustered protocadherin genes, generating single neuron diversity. Neuron 82, 94–108 (2014).
doi: 10.1016/j.neuron.2014.02.005 pubmed: 24698270 pmcid: 24698270
Ing-Esteves, S. et al. Combinatorial effects of alpha- and gamma-protocadherins on neuronal survival and dendritic self-avoidance. J. Neurosci. 38, 2713–2729 (2018).
doi: 10.1523/JNEUROSCI.3035-17.2018 pubmed: 29439167 pmcid: 29439167
Schreiner, D. & Weiner, J. A. Combinatorial homophilic interaction between γ-protocadherin multimers greatly expands the molecular diversity of cell adhesion. Proc. Natl Acad. Sci. USA 107, 14893–14898 (2010).
doi: 10.1073/pnas.1004526107 pubmed: 20679223 pmcid: 20679223
Rubinstein, R. et al. Molecular logic of neuronal self-recognition through protocadherin domain interactions. Cell 163, 629–642 (2015).
doi: 10.1016/j.cell.2015.09.026 pubmed: 26478182 pmcid: 26478182
Nicoludis, J. M. et al. Structure and sequence analyses of clustered protocadherins reveal antiparallel interactions that mediate homophilic specificity. Structure 23, 2087–2098 (2015).
doi: 10.1016/j.str.2015.09.005 pubmed: 26481813 pmcid: 26481813
Goodman, K. M. et al. Structural basis of diverse homophilic recognition by clustered α- and β-protocadherins. Neuron 90, 709–723 (2016).
doi: 10.1016/j.neuron.2016.04.004 pubmed: 27161523 pmcid: 27161523
Goodman, K. M. et al. γ-Protocadherin structural diversity and functional implications. eLife 5, e20930 (2016).
doi: 10.7554/eLife.20930 pubmed: 27782885 pmcid: 27782885
Nicoludis, J. M. et al. Antiparallel protocadherin homodimers use distinct affinity- and specificity-mediating regions in cadherin repeats 1-4. eLife 5, e18449 (2016).
doi: 10.7554/eLife.18449 pubmed: 27472898 pmcid: 27472898
Goodman, K. M. et al. Protocadherin cis-dimer architecture and recognition unit diversity. Proc. Natl Acad. Sci. USA 114, E9829–E9837 (2017).
doi: 10.1073/pnas.1713449114 pubmed: 29087338 pmcid: 29087338
Noble, A. J. et al. Routine single particle cryoEM sample and grid characterization by tomography. eLife 7, e34257 (2018).
doi: 10.7554/eLife.34257 pubmed: 29809143 pmcid: 29809143
Harrison, O. J. et al. The extracellular architecture of adherens junctions revealed by crystal structures of type I cadherins. Structure 19, 244–256 (2011).
doi: 10.1016/j.str.2010.11.016 pubmed: 21300292 pmcid: 21300292
Schalm, S. S., Ballif, B. A., Buchanan, S. M., Phillips, G. R. & Maniatis, T. Phosphorylation of protocadherin proteins by the receptor tyrosine kinase Ret. Proc. Natl Acad. Sci. USA 107, 13894–13899 (2010).
doi: 10.1073/pnas.1007182107 pubmed: 20616001 pmcid: 20616001
Suo, L., Lu, H., Ying, G., Capecchi, M. R. & Wu, Q. Protocadherin clusters and cell adhesion kinase regulate dendrite complexity through Rho GTPase. J. Mol. Cell Biol. 4, 362–376 (2012).
doi: 10.1093/jmcb/mjs034 pubmed: 22730554 pmcid: 22730554
Keeler, A. B., Schreiner, D. & Weiner, J. A. Protein kinase C phosphorylation of a γ-protocadherin c-terminal lipid binding domain regulates focal adhesion kinase inhibition and dendrite arborization. J. Biol. Chem. 290, 20674–20686 (2015).
doi: 10.1074/jbc.M115.642306 pubmed: 26139604 pmcid: 26139604
Mah, K. M. & Weiner, J. A. Regulation of Wnt signaling by protocadherins. Semin. Cell Dev. Biol. 69, 158–171 (2017).
doi: 10.1016/j.semcdb.2017.07.043 pubmed: 28774578 pmcid: 28774578
Fan, L. et al. Alpha protocadherins and Pyk2 kinase regulate cortical neuron migration and cytoskeletal dynamics via Rac1 GTPase and WAVE complex in mice. eLife 7, e35242 (2018).
doi: 10.7554/eLife.35242 pubmed: 29911975 pmcid: 29911975
Haas, I. G., Frank, M., Véron, N. & Kemler, R. Presenilin-dependent processing and nuclear function of γ-protocadherins. J. Biol. Chem. 280, 9313–9319 (2005).
doi: 10.1074/jbc.M412909200 pubmed: 15611067 pmcid: 15611067
Petersen, T. N., Brunak, S., von Heijne, G. & Nielsen, H. SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat. Methods 8, 785–786 (2011).
doi: 10.1038/nmeth.1701 pubmed: 21959131 pmcid: 21959131
Kabsch, W. XDS. Acta Crystallogr. D 66, 125–132 (2010).
doi: 10.1107/S0907444909047337
Strong, M. et al. Toward the structural genomics of complexes: crystal structure of a PE/PPE protein complex from Mycobacterium tuberculosis. Proc. Natl Acad. Sci. USA 103, 8060–8065 (2006).
doi: 10.1073/pnas.0602606103
McCoy, A. J. et al. Phaser crystallographic software. J. Appl. Crystallogr. 40, 658–674 (2007).
doi: 10.1107/S0021889807021206 pubmed: 19461840 pmcid: 19461840
Adams, P. D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D 66, 213–221 (2010).
doi: 10.1107/S0907444909052925
Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. D 66, 486–501 (2010).
doi: 10.1107/S0907444910007493
Pettersen, E. F. et al. UCSF Chimera–a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004).
doi: 10.1002/jcc.20084
Jain, T., Sheehan, P., Crum, J., Carragher, B. & Potter, C. S. Spotiton: a prototype for an integrated inkjet dispense and vitrification system for cryo-TEM. J. Struct. Biol. 179, 68–75 (2012).
doi: 10.1016/j.jsb.2012.04.020 pubmed: 22569522 pmcid: 22569522
Dandey, V. P. et al. Spotiton: New features and applications. J. Struct. Biol. 202, 161–169 (2018).
doi: 10.1016/j.jsb.2018.01.002 pubmed: 6317895 pmcid: 6317895
Wei, H. et al. Optimizing “self-wicking” nanowire grids. J. Struct. Biol. 202, 170–174 (2018).
doi: 10.1016/j.jsb.2018.01.001 pubmed: 5864531 pmcid: 5864531
Razinkov, I. et al. A new method for vitrifying samples for cryoEM. J. Struct. Biol. 195, 190–198 (2016).
doi: 10.1016/j.jsb.2016.06.001 pubmed: 5464370 pmcid: 5464370
Suloway, C. et al. Automated molecular microscopy: the new Leginon system. J. Struct. Biol. 151, 41–60 (2005).
doi: 10.1016/j.jsb.2005.03.010
Suloway, C. et al. Fully automated, sequential tilt-series acquisition with Leginon. J. Struct. Biol. 167, 11–18 (2009).
doi: 10.1016/j.jsb.2009.03.019 pubmed: 19361558 pmcid: 19361558
Zheng, S. Q. et al. MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy. Nat. Methods 14, 331–332 (2017)
doi: 10.1038/nmeth.4193 pubmed: 5494038 pmcid: 5494038
Noble, A. J. & Stagg, S. M. Automated batch fiducial-less tilt-series alignment in Appion using Protomo. J. Struct. Biol. 192, 270–278 (2015).
doi: 10.1016/j.jsb.2015.10.003 pubmed: 26455557 pmcid: 26455557
Lander, G. C. et al. Appion: an integrated, database-driven pipeline to facilitate EM image processing. J. Struct. Biol. 166, 95–102 (2009).
doi: 10.1016/j.jsb.2009.01.002 pubmed: 19263523 pmcid: 19263523
Winkler, H. & Taylor, K. A. Accurate marker-free alignment with simultaneous geometry determination and reconstruction of tilt series in electron tomography. Ultramicroscopy 106, 240–254 (2006).
doi: 10.1016/j.ultramic.2005.07.007 pubmed: 16137829 pmcid: 16137829
Agulleiro, J. I. & Fernandez, J. J. Fast tomographic reconstruction on multicore computers. Bioinformatics 27, 582–583 (2011).
doi: 10.1093/bioinformatics/btq692 pubmed: 21172911 pmcid: 21172911
Agulleiro, J.-I. & Fernandez, J.-J. Tomo3D 2.0—exploitation of advanced vector extensions (AVX) for 3D reconstruction. J. Struct. Biol. 189, 147–152 (2015).
doi: 10.1016/j.jsb.2014.11.009 pubmed: 25528570 pmcid: 25528570
Grant, T. & Grigorieff, N. Measuring the optimal exposure for single particle cryo-EM using a 2.6 Å reconstruction of rotavirus VP6. eLife 4, e06980 (2015).
doi: 10.7554/eLife.06980 pubmed: 4471936 pmcid: 4471936
Castaño-Díez, D., Kudryashev, M., Arheit, M. & Stahlberg, H. Dynamo: a flexible, user-friendly development tool for subtomogram averaging of cryo-EM data in high-performance computing environments. J. Struct. Biol. 178, 139–151 (2012).
doi: 10.1016/j.jsb.2011.12.017 pubmed: 22245546 pmcid: 22245546
Castaño-Díez, D., Kudryashev, M. & Stahlberg, H. Dynamo Catalogue: geometrical tools and data management for particle picking in subtomogram averaging of cryo-electron tomograms. J. Struct. Biol. 197, 135–144 (2017).
doi: 10.1016/j.jsb.2016.06.005 pubmed: 27288866 pmcid: 27288866
Bepler T. et al. Positive-unlabeled convolutional neural networks for particle picking in cryo-electron micrographs. Preprint at https://arxiv.org/abs/1803.08207 (2018).
Kimanius, D., Forsberg, B. O., Scheres, S. H. W. & Lindahl, E. Accelerated cryo-EM structure determination with parallelisation using GPUs in RELION-2. eLife 5, e18722 (2016).
doi: 10.7554/eLife.18722 pubmed: 5310839 pmcid: 5310839
Chen, M. et al. Convolutional neural networks for automated annotation of cellular cryo-electron tomograms. Nat. Methods 14, 983–985 (2017).
doi: 10.1038/nmeth.4405 pubmed: 28846087 pmcid: 28846087
Evans, P. R. & Murshdov, G. N. How good are my data and what is the resolution? Acta Crystallogr. D 69, 1204–1214 (2013).
doi: 10.1107/S0907444913000061 pubmed: 23793146 pmcid: 23793146
Evans, P. Scaling and assessment of data quality. Acta Crystallogr. D 62, 72–82 (2006).
doi: 10.1107/S0907444905036693

Auteurs

Julia Brasch (J)

Zuckerman Mind, Brain and Behavior Institute, Columbia University, New York, NY, USA.
Simons Electron Microscopy Center, New York Structural Biology Center, The National Resource for Automated Molecular Microscopy, New York, NY, USA.
Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA.

Kerry M Goodman (KM)

Zuckerman Mind, Brain and Behavior Institute, Columbia University, New York, NY, USA.
Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA.

Alex J Noble (AJ)

Simons Electron Microscopy Center, New York Structural Biology Center, The National Resource for Automated Molecular Microscopy, New York, NY, USA.

Micah Rapp (M)

Zuckerman Mind, Brain and Behavior Institute, Columbia University, New York, NY, USA.
Simons Electron Microscopy Center, New York Structural Biology Center, The National Resource for Automated Molecular Microscopy, New York, NY, USA.
Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA.

Seetha Mannepalli (S)

Zuckerman Mind, Brain and Behavior Institute, Columbia University, New York, NY, USA.
Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA.

Fabiana Bahna (F)

Zuckerman Mind, Brain and Behavior Institute, Columbia University, New York, NY, USA.
Howard Hughes Medical Institute, Columbia University, New York, NY, USA.
Department of Systems Biology, Columbia University, New York, NY, USA.

Venkata P Dandey (VP)

Simons Electron Microscopy Center, New York Structural Biology Center, The National Resource for Automated Molecular Microscopy, New York, NY, USA.

Tristan Bepler (T)

Computational and Systems Biology, MIT, Cambridge, MA, USA.
Computer Science and Artificial Intelligence Laboratory, MIT, Cambridge, MA, USA.

Bonnie Berger (B)

Computer Science and Artificial Intelligence Laboratory, MIT, Cambridge, MA, USA.
Department of Mathematics, MIT, Cambridge, MA, USA.

Tom Maniatis (T)

Zuckerman Mind, Brain and Behavior Institute, Columbia University, New York, NY, USA.
Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA.

Clinton S Potter (CS)

Simons Electron Microscopy Center, New York Structural Biology Center, The National Resource for Automated Molecular Microscopy, New York, NY, USA.
Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA.

Bridget Carragher (B)

Simons Electron Microscopy Center, New York Structural Biology Center, The National Resource for Automated Molecular Microscopy, New York, NY, USA.
Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA.

Barry Honig (B)

Zuckerman Mind, Brain and Behavior Institute, Columbia University, New York, NY, USA. bh6@cumc.columbia.edu.
Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA. bh6@cumc.columbia.edu.
Howard Hughes Medical Institute, Columbia University, New York, NY, USA. bh6@cumc.columbia.edu.
Department of Systems Biology, Columbia University, New York, NY, USA. bh6@cumc.columbia.edu.
Department of Medicine, Columbia University, New York, NY, USA. bh6@cumc.columbia.edu.

Lawrence Shapiro (L)

Zuckerman Mind, Brain and Behavior Institute, Columbia University, New York, NY, USA. lss8@columbia.edu.
Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA. lss8@columbia.edu.
Department of Systems Biology, Columbia University, New York, NY, USA. lss8@columbia.edu.

Articles similaires

Robotic Surgical Procedures Animals Humans Telemedicine Models, Animal

Odour generalisation and detection dog training.

Lyn Caldicott, Thomas W Pike, Helen E Zulch et al.
1.00
Animals Odorants Dogs Generalization, Psychological Smell
Photosynthesis Ribulose-Bisphosphate Carboxylase Carbon Dioxide Molecular Dynamics Simulation Cyanobacteria
Animals TOR Serine-Threonine Kinases Colorectal Neoplasms Colitis Mice

Classifications MeSH