Visualization of clustered protocadherin neuronal self-recognition complexes.
Journal
Nature
ISSN: 1476-4687
Titre abrégé: Nature
Pays: England
ID NLM: 0410462
Informations de publication
Date de publication:
05 2019
05 2019
Historique:
received:
03
07
2018
accepted:
07
03
2019
pubmed:
12
4
2019
medline:
22
1
2020
entrez:
12
4
2019
Statut:
ppublish
Résumé
Neurite self-recognition and avoidance are fundamental properties of all nervous systems
Identifiants
pubmed: 30971825
doi: 10.1038/s41586-019-1089-3
pii: 10.1038/s41586-019-1089-3
pmc: PMC6736547
mid: NIHMS1023915
doi:
Substances chimiques
Cadherins
0
Liposomes
0
Pcdh1 protein, mouse
0
Protocadherins
0
Types de publication
Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, Non-P.H.S.
Langues
eng
Sous-ensembles de citation
IM
Pagination
280-283Subventions
Organisme : NIGMS NIH HHS
ID : F32 GM128303
Pays : United States
Organisme : NIGMS NIH HHS
ID : P41 GM103310
Pays : United States
Organisme : NIMH NIH HHS
ID : R01 MH114817
Pays : United States
Organisme : NIGMS NIH HHS
ID : T32 GM087237
Pays : United States
Organisme : NIGMS NIH HHS
ID : R01 GM081871
Pays : United States
Références
Zipursky, S. L. & Grueber, W. B. The molecular basis of self-avoidance. Annu. Rev. Neurosci. 36, 547–568 (2013).
doi: 10.1146/annurev-neuro-062111-150414
pubmed: 23841842
pmcid: 23841842
Lefebvre, J. L., Kostadinov, D., Chen, W. V., Maniatis, T. & Sanes, J. R. Protocadherins mediate dendritic self-avoidance in the mammalian nervous system. Nature 488, 517–521 (2012).
doi: 10.1038/nature11305
pubmed: 22842903
pmcid: 22842903
Molumby, M. J., Keeler, A. B. & Weiner, J. A. Homophilic protocadherin cell–cell interactions promote dendrite complexity. Cell Reports 15, 1037–1050 (2016).
doi: 10.1016/j.celrep.2016.03.093
pubmed: 27117416
pmcid: 27117416
Kostadinov, D. & Sanes, J. R. Protocadherin-dependent dendritic self-avoidance regulates neural connectivity and circuit function. eLife 4, e08964 (2015).
doi: 10.7554/eLife.08964
Mountoufaris, G. et al. Multicluster Pcdh diversity is required for mouse olfactory neural circuit assembly. Science 356, 411–414 (2017).
doi: 10.1126/science.aai8801
pubmed: 28450637
pmcid: 28450637
Wu, Q. & Maniatis, T. A striking organization of a large family of human neural cadherin-like cell adhesion genes. Cell 97, 779–790 (1999).
doi: 10.1016/S0092-8674(00)80789-8
pubmed: 10380929
pmcid: 10380929
Wu, Q. et al. Comparative DNA sequence analysis of mouse and human protocadherin gene clusters. Genome Res. 11, 389–404 (2001).
doi: 10.1101/gr.167301
pubmed: 11230163
pmcid: 11230163
Zipursky, S. L. & Sanes, J. R. Chemoaffinity revisited: dscams, protocadherins, and neural circuit assembly. Cell 143, 343–353 (2010).
doi: 10.1016/j.cell.2010.10.009
pubmed: 21029858
pmcid: 21029858
Yagi, T. Molecular codes for neuronal individuality and cell assembly in the brain. Front. Mol. Neurosci. 5, 45 (2012).
doi: 10.3389/fnmol.2012.00045
pubmed: 22518100
pmcid: 22518100
Thu, C. A. et al. Single-cell identity generated by combinatorial homophilic interactions between α, β, and γ protocadherins. Cell 158, 1045–1059 (2014).
doi: 10.1016/j.cell.2014.07.012
pubmed: 25171406
pmcid: 25171406
Rubinstein, R., Goodman, K. M., Maniatis, T., Shapiro, L. & Honig, B. Structural origins of clustered protocadherin-mediated neuronal barcoding. Semin. Cell Dev. Biol. 69, 140–150 (2017).
doi: 10.1016/j.semcdb.2017.07.023
pubmed: 28743640
pmcid: 28743640
Toyoda, S. et al. Developmental epigenetic modification regulates stochastic expression of clustered protocadherin genes, generating single neuron diversity. Neuron 82, 94–108 (2014).
doi: 10.1016/j.neuron.2014.02.005
pubmed: 24698270
pmcid: 24698270
Ing-Esteves, S. et al. Combinatorial effects of alpha- and gamma-protocadherins on neuronal survival and dendritic self-avoidance. J. Neurosci. 38, 2713–2729 (2018).
doi: 10.1523/JNEUROSCI.3035-17.2018
pubmed: 29439167
pmcid: 29439167
Schreiner, D. & Weiner, J. A. Combinatorial homophilic interaction between γ-protocadherin multimers greatly expands the molecular diversity of cell adhesion. Proc. Natl Acad. Sci. USA 107, 14893–14898 (2010).
doi: 10.1073/pnas.1004526107
pubmed: 20679223
pmcid: 20679223
Rubinstein, R. et al. Molecular logic of neuronal self-recognition through protocadherin domain interactions. Cell 163, 629–642 (2015).
doi: 10.1016/j.cell.2015.09.026
pubmed: 26478182
pmcid: 26478182
Nicoludis, J. M. et al. Structure and sequence analyses of clustered protocadherins reveal antiparallel interactions that mediate homophilic specificity. Structure 23, 2087–2098 (2015).
doi: 10.1016/j.str.2015.09.005
pubmed: 26481813
pmcid: 26481813
Goodman, K. M. et al. Structural basis of diverse homophilic recognition by clustered α- and β-protocadherins. Neuron 90, 709–723 (2016).
doi: 10.1016/j.neuron.2016.04.004
pubmed: 27161523
pmcid: 27161523
Goodman, K. M. et al. γ-Protocadherin structural diversity and functional implications. eLife 5, e20930 (2016).
doi: 10.7554/eLife.20930
pubmed: 27782885
pmcid: 27782885
Nicoludis, J. M. et al. Antiparallel protocadherin homodimers use distinct affinity- and specificity-mediating regions in cadherin repeats 1-4. eLife 5, e18449 (2016).
doi: 10.7554/eLife.18449
pubmed: 27472898
pmcid: 27472898
Goodman, K. M. et al. Protocadherin cis-dimer architecture and recognition unit diversity. Proc. Natl Acad. Sci. USA 114, E9829–E9837 (2017).
doi: 10.1073/pnas.1713449114
pubmed: 29087338
pmcid: 29087338
Noble, A. J. et al. Routine single particle cryoEM sample and grid characterization by tomography. eLife 7, e34257 (2018).
doi: 10.7554/eLife.34257
pubmed: 29809143
pmcid: 29809143
Harrison, O. J. et al. The extracellular architecture of adherens junctions revealed by crystal structures of type I cadherins. Structure 19, 244–256 (2011).
doi: 10.1016/j.str.2010.11.016
pubmed: 21300292
pmcid: 21300292
Schalm, S. S., Ballif, B. A., Buchanan, S. M., Phillips, G. R. & Maniatis, T. Phosphorylation of protocadherin proteins by the receptor tyrosine kinase Ret. Proc. Natl Acad. Sci. USA 107, 13894–13899 (2010).
doi: 10.1073/pnas.1007182107
pubmed: 20616001
pmcid: 20616001
Suo, L., Lu, H., Ying, G., Capecchi, M. R. & Wu, Q. Protocadherin clusters and cell adhesion kinase regulate dendrite complexity through Rho GTPase. J. Mol. Cell Biol. 4, 362–376 (2012).
doi: 10.1093/jmcb/mjs034
pubmed: 22730554
pmcid: 22730554
Keeler, A. B., Schreiner, D. & Weiner, J. A. Protein kinase C phosphorylation of a γ-protocadherin c-terminal lipid binding domain regulates focal adhesion kinase inhibition and dendrite arborization. J. Biol. Chem. 290, 20674–20686 (2015).
doi: 10.1074/jbc.M115.642306
pubmed: 26139604
pmcid: 26139604
Mah, K. M. & Weiner, J. A. Regulation of Wnt signaling by protocadherins. Semin. Cell Dev. Biol. 69, 158–171 (2017).
doi: 10.1016/j.semcdb.2017.07.043
pubmed: 28774578
pmcid: 28774578
Fan, L. et al. Alpha protocadherins and Pyk2 kinase regulate cortical neuron migration and cytoskeletal dynamics via Rac1 GTPase and WAVE complex in mice. eLife 7, e35242 (2018).
doi: 10.7554/eLife.35242
pubmed: 29911975
pmcid: 29911975
Haas, I. G., Frank, M., Véron, N. & Kemler, R. Presenilin-dependent processing and nuclear function of γ-protocadherins. J. Biol. Chem. 280, 9313–9319 (2005).
doi: 10.1074/jbc.M412909200
pubmed: 15611067
pmcid: 15611067
Petersen, T. N., Brunak, S., von Heijne, G. & Nielsen, H. SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat. Methods 8, 785–786 (2011).
doi: 10.1038/nmeth.1701
pubmed: 21959131
pmcid: 21959131
Kabsch, W. XDS. Acta Crystallogr. D 66, 125–132 (2010).
doi: 10.1107/S0907444909047337
Strong, M. et al. Toward the structural genomics of complexes: crystal structure of a PE/PPE protein complex from Mycobacterium tuberculosis. Proc. Natl Acad. Sci. USA 103, 8060–8065 (2006).
doi: 10.1073/pnas.0602606103
McCoy, A. J. et al. Phaser crystallographic software. J. Appl. Crystallogr. 40, 658–674 (2007).
doi: 10.1107/S0021889807021206
pubmed: 19461840
pmcid: 19461840
Adams, P. D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D 66, 213–221 (2010).
doi: 10.1107/S0907444909052925
Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. D 66, 486–501 (2010).
doi: 10.1107/S0907444910007493
Pettersen, E. F. et al. UCSF Chimera–a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004).
doi: 10.1002/jcc.20084
Jain, T., Sheehan, P., Crum, J., Carragher, B. & Potter, C. S. Spotiton: a prototype for an integrated inkjet dispense and vitrification system for cryo-TEM. J. Struct. Biol. 179, 68–75 (2012).
doi: 10.1016/j.jsb.2012.04.020
pubmed: 22569522
pmcid: 22569522
Dandey, V. P. et al. Spotiton: New features and applications. J. Struct. Biol. 202, 161–169 (2018).
doi: 10.1016/j.jsb.2018.01.002
pubmed: 6317895
pmcid: 6317895
Wei, H. et al. Optimizing “self-wicking” nanowire grids. J. Struct. Biol. 202, 170–174 (2018).
doi: 10.1016/j.jsb.2018.01.001
pubmed: 5864531
pmcid: 5864531
Razinkov, I. et al. A new method for vitrifying samples for cryoEM. J. Struct. Biol. 195, 190–198 (2016).
doi: 10.1016/j.jsb.2016.06.001
pubmed: 5464370
pmcid: 5464370
Suloway, C. et al. Automated molecular microscopy: the new Leginon system. J. Struct. Biol. 151, 41–60 (2005).
doi: 10.1016/j.jsb.2005.03.010
Suloway, C. et al. Fully automated, sequential tilt-series acquisition with Leginon. J. Struct. Biol. 167, 11–18 (2009).
doi: 10.1016/j.jsb.2009.03.019
pubmed: 19361558
pmcid: 19361558
Zheng, S. Q. et al. MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy. Nat. Methods 14, 331–332 (2017)
doi: 10.1038/nmeth.4193
pubmed: 5494038
pmcid: 5494038
Noble, A. J. & Stagg, S. M. Automated batch fiducial-less tilt-series alignment in Appion using Protomo. J. Struct. Biol. 192, 270–278 (2015).
doi: 10.1016/j.jsb.2015.10.003
pubmed: 26455557
pmcid: 26455557
Lander, G. C. et al. Appion: an integrated, database-driven pipeline to facilitate EM image processing. J. Struct. Biol. 166, 95–102 (2009).
doi: 10.1016/j.jsb.2009.01.002
pubmed: 19263523
pmcid: 19263523
Winkler, H. & Taylor, K. A. Accurate marker-free alignment with simultaneous geometry determination and reconstruction of tilt series in electron tomography. Ultramicroscopy 106, 240–254 (2006).
doi: 10.1016/j.ultramic.2005.07.007
pubmed: 16137829
pmcid: 16137829
Agulleiro, J. I. & Fernandez, J. J. Fast tomographic reconstruction on multicore computers. Bioinformatics 27, 582–583 (2011).
doi: 10.1093/bioinformatics/btq692
pubmed: 21172911
pmcid: 21172911
Agulleiro, J.-I. & Fernandez, J.-J. Tomo3D 2.0—exploitation of advanced vector extensions (AVX) for 3D reconstruction. J. Struct. Biol. 189, 147–152 (2015).
doi: 10.1016/j.jsb.2014.11.009
pubmed: 25528570
pmcid: 25528570
Grant, T. & Grigorieff, N. Measuring the optimal exposure for single particle cryo-EM using a 2.6 Å reconstruction of rotavirus VP6. eLife 4, e06980 (2015).
doi: 10.7554/eLife.06980
pubmed: 4471936
pmcid: 4471936
Castaño-Díez, D., Kudryashev, M., Arheit, M. & Stahlberg, H. Dynamo: a flexible, user-friendly development tool for subtomogram averaging of cryo-EM data in high-performance computing environments. J. Struct. Biol. 178, 139–151 (2012).
doi: 10.1016/j.jsb.2011.12.017
pubmed: 22245546
pmcid: 22245546
Castaño-Díez, D., Kudryashev, M. & Stahlberg, H. Dynamo Catalogue: geometrical tools and data management for particle picking in subtomogram averaging of cryo-electron tomograms. J. Struct. Biol. 197, 135–144 (2017).
doi: 10.1016/j.jsb.2016.06.005
pubmed: 27288866
pmcid: 27288866
Bepler T. et al. Positive-unlabeled convolutional neural networks for particle picking in cryo-electron micrographs. Preprint at https://arxiv.org/abs/1803.08207 (2018).
Kimanius, D., Forsberg, B. O., Scheres, S. H. W. & Lindahl, E. Accelerated cryo-EM structure determination with parallelisation using GPUs in RELION-2. eLife 5, e18722 (2016).
doi: 10.7554/eLife.18722
pubmed: 5310839
pmcid: 5310839
Chen, M. et al. Convolutional neural networks for automated annotation of cellular cryo-electron tomograms. Nat. Methods 14, 983–985 (2017).
doi: 10.1038/nmeth.4405
pubmed: 28846087
pmcid: 28846087
Evans, P. R. & Murshdov, G. N. How good are my data and what is the resolution? Acta Crystallogr. D 69, 1204–1214 (2013).
doi: 10.1107/S0907444913000061
pubmed: 23793146
pmcid: 23793146
Evans, P. Scaling and assessment of data quality. Acta Crystallogr. D 62, 72–82 (2006).
doi: 10.1107/S0907444905036693