Tumor suppressor protein CYLD regulates morphogenesis of dendrites and spines.


Journal

The European journal of neuroscience
ISSN: 1460-9568
Titre abrégé: Eur J Neurosci
Pays: France
ID NLM: 8918110

Informations de publication

Date de publication:
08 2019
Historique:
received: 26 09 2018
accepted: 01 04 2019
pubmed: 20 4 2019
medline: 12 8 2020
entrez: 20 4 2019
Statut: ppublish

Résumé

Cylindromatosis tumor suppressor protein (CYLD) was initially identified as a tumor suppressor deubiquitylating protein in familial cylindromatosis patients. Proteomic analyses using rodent brain samples revealed enrichment of CYLD in purified postsynaptic density fractions. Here, we report that CYLD regulates dendritic growth and postsynaptic differentiation in mouse hippocampal neurons. CYLD showed diffuse localization in rapidly growing dendrites, but was gradually concentrated in spines. Overexpression and knockdown of CYLD in the early stage of cultured neurons demonstrated that CYLD positively regulated dendritic growth. Phenotypes in dendritic morphogenesis induced by CYLD overexpression and knockdown could be reversed by manipulation of the critical acetylation site of α-tubulin, suggesting tubulin acetylation is a downstream pathway of CYLD-dependent dendritic growth. Overexpression and knockdown of CYLD in the later stage of cultured neurons revealed that CYLD promoted formation of postsynaptic spines. Influence of CYLD on spines was not affected by co-expression of acetylation mutant forms of α-tubulin, indicating that CYLD regulates dendritic growth and spine formation through different molecular mechanisms. Analyses with the truncated and mutated forms of CYLD demonstrated that the first microtubule-binding domain of CYLD was critical for spine formation. These results suggest important roles of CYLD in sequential promotion of dendritic growth and postsynaptic spine maturation.

Identifiants

pubmed: 31001844
doi: 10.1111/ejn.14421
doi:

Substances chimiques

Tubulin 0
CYLD protein, mouse EC 3.4.19.12
Deubiquitinating Enzyme CYLD EC 3.4.19.12

Banques de données

GENBANK
['NM_173369']

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

2722-2739

Informations de copyright

© 2019 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

Références

Akhmanova, A., & Steinmetz, M. O. (2008). Tracking the ends: A dynamic protein network controls the fate of microtubule tips. Nature Reviews Molecular Cell Biology, 9, 309-322. https://doi.org/10.1038/nrm2369
Azimifar, S. B., Bottcher, R. T., Zanivan, S., Grashoff, C., Krüger, M., Legate, K. R., … Fassler, R. (2012). Induction of membrane circular dorsal ruffles requires co-signalling of integrin-ILK-complex and EGF receptor. Journal of Cell Science, 125, 435-448. https://doi.org/10.1242/jcs.091652
Bernstein, B. W., & Bamburg, J. R. (2010). ADF/Cofilin: A functional node in cell biology. Trends in Cell Biology, 20, 187-195. https://doi.org/10.1016/j.tcb.2010.01.001
Brummelkamp, T. R., Nijman, S. M., Dirac, A. M., & Bernards, R. (2003). Loss of the cylindromatosis tumour suppressor inhibits apoptosis by activating NF-κB. Nature, 424, 797-801. https://doi.org/10.1038/nature01811
Cheng, D., Hoogenraad, C. C., Rush, J., Ramm, E., Schlager, M. A., Duong, D. M., … Peng, J. (2006). Relative and absolute quantification of postsynaptic density proteome isolated from rat forebrain and cerebellum. Molecular and Cellular Proteomics, 5, 1158-1170. https://doi.org/10.1074/mcp.D500009-MCP200
Cho, K.-O., Hunt, C. A., & Kennedy, M. B. (1992). The rat brain postsynaptic density fraction contains a homolog of the Drosophila discs-large tumor suppressor protein. Neuron, 9, 929-942. https://doi.org/10.1016/0896-6273(92)90245-9
Cingolani, L. A., & Goda, Y. (2008). Actin in action: The interplay between the actin cytoskeleton and synaptic efficacy. Nature Reviews Neuroscience, 9, 344-356. https://doi.org/10.1038/nrn2373
Conde, C., & Caceres, A. (2009). Microtubule assembly, organization and dynamics in axons and dendrites. Nature Reviews Neuroscience, 10, 319-332. https://doi.org/10.1038/nrn2631
Courtois, G. (2008). Tumor suppressor CYLD: Negative regulation of NF-κB signaling and more. Cellular and Molecular Life Sciences, 65, 1123-1132. https://doi.org/10.1007/s00018-007-7465-4
Creppe, C., Malinouskaya, L., Volvert, M.-L., Gillard, M., Close, P., Malaise, O., … Nguyen, L. (2009). Elongator controls the migration and differentiation of cortical neurons through acetylation of α-tubulin. Cell, 136, 551-564. https://doi.org/10.1016/j.cell.2008.11.043
De La Torre-Ubieta, L., & Bonni, A. (2011). Transcriptional regulation of neuronal polarity and morphogenesis in the mammalian brain. Neuron, 72, 22-40. https://doi.org/10.1016/j.neuron.2011.09.018
Dosemeci, A., Makusky, A. J., Jankowska-Stephens, E., Yang, X., Slotta, D. J., & Markey, S. P. (2007). Composition of the synaptic PSD-95 complex. Molecular and Cellular Proteomics, 6, 1749-1760. https://doi.org/10.1074/mcp.M700040-MCP200
Dosemeci, A., Thein, S., Yang, Y., Reese, T. S., & Tao-Cheng, J.-H. (2013). CYLD, a deubiquitinase specific for lysine63-linked polyubiquitins, accumulates at the postsynaptic density in an activity-dependent manner. Biochemical Biophysical Research Communications, 430, 245-249. https://doi.org/10.1016/j.bbrc.2012.10.131
Ebihara, T., Kawabata, I., Usui, S., Sobue, K., & Okabe, S. (2003). Synchronized formation and remodeling of postsynaptic densities: Long-term visualization of hippocampal neurons expressing postsynaptic density proteins tagged with green fluorescent protein. Journal of Neuroscience, 23, 2170-2181. https://doi.org/10.1523/JNEUROSCI.23-06-02170.2003
Gao, Y. S., Hubbert, C. C., & Yao, T.-P. (2010). The microtubule-associated histone deacetylase 6 (HDAC6) regulates epidermal growth factor receptor (EGFR) endocytic trafficking and degradation. Journal of Biological Chemistry, 285, 11219-11226. https://doi.org/10.1074/jbc.M109.042754
Gao, J., Huo, L., Sun, X., Liu, M., Li, D., Dong, J.-T., & Zhou, J. (2008). The tumor suppressor CYLD regulates microtubule dynamics and plays a role in cell migration. Journal of Biological Chemistry, 283, 8802-8809. https://doi.org/10.1074/jbc.M708470200
Gao, J., Sun, L., Huo, L., Liu, M., Li, D., & Zhou, J. (2010). CYLD regulates angiogenesis by mediating vascular endothelial cell migration. Blood, 115, 4130-4137. https://doi.org/10.1182/blood-2009-10-248526
Gu, J., Firestein, B. L., & Zheng, J. Q. (2008). Microtubules in dendritic spine development. Journal of Neuroscience, 28, 12120-12124. https://doi.org/10.1523/JNEUROSCI.2509-08.2008
Gu, J., Lee, C. W., Fan, Y., Komlos, D., Tang, X., Sun, C., … Zheng, J. Q. (2010). ADF/cofilin-mediated actin dynamics regulate AMPA receptor trafficking during synaptic plasticity. Nature Neuroscience, 13, 1208-1215. https://doi.org/10.1038/nn.2634
Gutierrez, H., & Davies, A. M. (2011). Regulation of neural process growth, elaboration and structural plasticity by NF-κB. Trends in Neuroscience, 34, 316-325. https://doi.org/10.1016/j.tins.2011.03.001
Hotulainen, P., & Hoogenraad, C. C. (2010). Actin in dendritic spines: Connecting dynamics to function. Journal of Cell Biology, 189, 619-629. https://doi.org/10.1083/jcb.201003008
Hu, X., Viesselmann, C., Nam, S., Merriam, E., & Dent, E. W. (2008). Activity-dependent dynamic microtubule invasion of dendritic spines. Journal of Neuroscience, 28, 13094-13105. https://doi.org/10.1523/JNEUROSCI.3074-08.2008
Hubbert, C., Guardiola, A., Shao, R., Kawaguchi, Y., Ito, A., Nixon, A., … Yao, T.-P. (2002). HDAC6 is a microtubule-associated deacetylase. Nature, 417, 455-458. https://doi.org/10.1038/417455a
Jan, Y.-N., & Jan, L. Y. (2010). Branching out: Mechanisms of dendritic arborization. Nature Reviews Neuroscience, 11, 316-328. https://doi.org/10.1038/nrn2836
Jaworski, J., Kapitein, L. C., Gouveia, S. M., Dortland, B. R., Wulf, P. S., Grigoriev, I., … Hoogenraad, C. C. (2009). Dynamic microtubules regulate dendritic spine morphology and synaptic plasticity. Neuron, 61, 85-100. https://doi.org/10.1016/j.neuron.2008.11.013
Jiang, M., & Chen, G. (2006). High Ca2+-phosphate transfection efficiency in low-density neuronal cultures. Nature Protocols, 1, 695-700. https://doi.org/10.1038/nprot.2006.86
Jordan, B. A., Fernholz, B. D., Boussac, M., Xu, C., Grigorean, G., Ziff, E. B., & Neubert, T. A. (2004). Identification and verification of novel rodent postsynaptic density proteins. Molecular and Cellular Proteomics, 3, 857-871. https://doi.org/10.1074/mcp.M400045-MCP200
Kaltschmidt, B., & Kaltschmidt, C. (2009). NF-κB in the nervous system. Cold Spring Harbor Perspectives in Biology, 1, a001271.
Kovalenko, A., Chable-Bessia, C., Cantarella, G., Israel, A., Wallach, D., & Courtois, G. (2003). The tumour suppressor CYLD negatively regulates NF-κB signalling by deubiquitination. Nature, 424, 801-805. https://doi.org/10.1038/nature01802
Kuriu, T., Inoue, A., Bito, H., Sobue, K., & Okabe, S. (2006). Differential control of postsynaptic density scaffolds via actin-dependent and -independent mechanisms. Journal of Neuroscience, 26, 7693-7706. https://doi.org/10.1523/JNEUROSCI.0522-06.2006
Massoumi, R. (2010). Ubiquitin chain cleavage: CYLD at work. Trends in Biochemical Sciences, 35, 392-399. https://doi.org/10.1016/j.tibs.2010.02.007
Massoumi, R., Chmielarska, K., Hennecke, K., Pfeifer, A., & Fassler, R. (2006). Cyld inhibits tumor cell proliferation by blocking Bcl-3-dependent NF-κB signaling. Cell, 125, 665-677. https://doi.org/10.1016/j.cell.2006.03.041
Mattson, M. P., & Meffert, M. K. (2006). Roles for NF-κB in nerve cell survival, plasticity, and disease. Cell Death and Differentiation, 13, 852-860. https://doi.org/10.1038/sj.cdd.4401837
McVicker, D. P., Awe, A. M., Richters, K. E., Wilson, R. L., Cowdrey, D. A., Hu, X., … Dent, E. W. (2016). Transport of a kinesin-cargo pair along microtubules into dendritic spines undergoing synaptic plasticity. Nature Communications, 7, 12741. https://doi.org/10.1038/ncomms12741
North, B. J., Marshall, B. L., Borra, M. T., Denu, J. M., & Verdin, E. (2003). The human Sir2 ortholog, SIRT2, is an NAD+-dependent tubulin deacetylase. Molecular Cell, 11, 437-444. https://doi.org/10.1016/S1097-2765(03)00038-8
Ohkawa, N., Sugisaki, S., Tokunaga, E., Fujitani, K., Hayasaka, T., Setou, M., & Inokuchi, K. (2008). N-acetyltransferase ARD1-NAT1 regulates neuronal dendritic development. Genes to Cells, 13, 1171-1183.
Okabe, S., Kim, H.-D., Miwa, A., Kuriu, T., & Okado, H. (1999). Continual remodeling of postsynaptic density and its regulation by synaptic activity. Nature Neuroscience, 2, 804-811. https://doi.org/10.1038/12175
Okabe, S., Miwa, A., & Okado, H. (1999). Alternative splicing of the C-terminal domain regulates cell surface expression of the NMDA receptor NR1 subunit. Journal of Neuroscience, 19, 7781-7792. https://doi.org/10.1523/JNEUROSCI.19-18-07781.1999
Okabe, S., Miwa, A., & Okado, H. (2001). Spine formation and correlated assembly of presynaptic and postsynaptic molecules. Journal of Neuroscience, 21, 6105-6114. https://doi.org/10.1523/JNEUROSCI.21-16-06105.2001
Peng, J., Kim, M. J., Cheng, D., Duong, D. M., Gygi, S. P., & Sheng, M. (2004). Semiquantitative proteomic analysis of rat forebrain postsynaptic density fractions by mass spectrometry. Journal of Biological Chemistry, 279, 21003-21011. https://doi.org/10.1074/jbc.M400103200
Peris, L., Thery, M., Fauré, J., Saoudi, Y., Lafanechère, L., Chilton, J. K., … Job, D. (2006). Tubulin tyrosination is a major factor affecting the recruitment of CAP-Gly proteins at microtubule plus ends. Journal of Cell Biology, 174, 839-849. https://doi.org/10.1083/jcb.200512058
Poulain, F. E., & Sobel, A. (2010). The microtubule network and neuronal morphogenesis: Dynamic and coordinated orchestration through multiple players. Molecular and Cellular Neuroscience, 43, 15-32. https://doi.org/10.1016/j.mcn.2009.07.012
Puram, S. V., & Bonni, A. (2013). Cell-intrinsic drivers of dendrite morphogenesis. Development, 140, 4657-4671. https://doi.org/10.1242/dev.087676
Reuther, G. W., Lambert, Q. T., Booden, M. A., Wennerberg, K., Becknell, B., Marcucci, G., … Der, C. J. (2001). Leukemia-associated Rho guanine nucleotide exchange factor, a Dbl family protein found mutated in leukemia, causes transformation by activation of RhoA. Journal of Biological Chemistry, 276, 27145-27151. https://doi.org/10.1074/jbc.M103565200
Sadoul, K., Wang, J., Diagouraga, B., & Khochbin, S. (2011). The tale of protein lysine acetylation in the cytoplasm. Journal of Biomedicine and Biotechnology, 2011, 970382.
Schatzle, P., da Silva, M. E., Tas, R. P., Katrukha, E. A., Hu, H. Y., Wierenga, C. J., … Hoogenraad, C. C. (2018). Activity-dependent actin remodeling at the base of dendritic spines promotes microtubule entry. Current Biology, 28, 2081-2093. https://doi.org/10.1016/j.cub.2018.05.004
Shin, E., Kashiwagi, Y., Kuriu, T., Iwasaki, H., Tanaka, T., Koizumi, H., … Okabe, S. (2013). Doublecortin-like kinase enhances dendritic remodeling and negatively regulates synapse maturation. Nature Communications, 4, 1440. https://doi.org/10.1038/ncomms2443
Soppina, V., Herbstman, J. F., Skiniotis, G., & Verhey, K. J. (2012). Luminal localization of α-tubulin K40 acetylation by cryo-EM analysis of fab-labeled microtubules. PLoS ONE, 7, e48204. https://doi.org/10.1371/journal.pone.0048204
Stegmeier, F., Sowa, M. E., Nalepa, G., Gygi, S. P., Harper, J. W., & Elledge, S. J. (2007). The tumor suppressor CYLD regulates entry into mitosis. Proceedings of the National Academy of Sciences of the United State of America, 104, 8869-8874. https://doi.org/10.1073/pnas.0703268104
Steinmetz, M. O., & Akhmanova, A. (2008). Capturing protein tails by CAP-Gly domains. Trends in Biochemical Sciences, 33, 535-545. https://doi.org/10.1016/j.tibs.2008.08.006
Sun, S. C. (2010). CYLD: A tumor suppressor deubiquitinase regulating NF-κB activation and diverse biological processes. Cell Death and Differentiation, 17, 25-34. https://doi.org/10.1038/cdd.2009.43
Tada, T., Simonetta, A., Batterton, M., Kinoshita, M., Edbauer, D., & Sheng, M. (2007). Role of septin cytoskeleton in spine morphogenesis and dendrite development in neurons. Current Biology, 17, 1752-1758. https://doi.org/10.1016/j.cub.2007.09.039
Tolias, K. F., Duman, J. G., & Um, K. (2011). Control of synapse development and plasticity by Rho GTPase regulatory proteins. Progress in Neurobiology, 94, 133-148. https://doi.org/10.1016/j.pneurobio.2011.04.011
Tortosa, E., Montenegro-Venegas, C., Benoist, M., Härtel, S., González-Billault, C., Esteban, J. A., & Avila, J. (2011). Microtubule-associated protein 1B (MAP1B) is required for dendritic spine development and synaptic maturation. Journal of Biological Chemistry, 286, 40638-40648. https://doi.org/10.1074/jbc.M111.271320
Trompouki, E., Hatzivassiliou, E., Tsichritzis, T., Farmer, H., Ashworth, A., & Mosialos, G. (2003). CYLD is a deubiquitinating enzyme that negatively regulates NF-κB activation by TNFR family members. Nature, 424, 793-796. https://doi.org/10.1038/nature01803
Urbanska, M., Blazejczyk, M., & Jaworski, J. (2008). Molecular basis of dendritic arborization. Acta Neurobiologiae Experimentalis (Wars), 68, 264-288.
Valnegri, P., Puram, S. V., & Bonni, A. (2015). Regulation of dendrite morphogenesis by extrinsic cues. Trends in Neuroscience, 38, 439-447. https://doi.org/10.1016/j.tins.2015.05.003
Weisbrich, A., Honnappa, S., Jaussi, R., Okhrimenko, O., Frey, D., Jelesarov, I., … Steinmetz, M. O. (2007). Structure-function relationship of CAP-Gly domains. Nature Structural and Molecular Biology, 14, 959-967. https://doi.org/10.1038/nsmb1291
Wickstrom, S. A., Masoumi, K. C., Khochbin, S., Fassler, R., & Massoumi, R. (2010). CYLD negatively regulates cell-cycle progression by inactivating HDAC6 and increasing the levels of acetylated tubulin. EMBO Journal, 29, 131-144. https://doi.org/10.1038/emboj.2009.317
Yang, Y., Ran, J., Sun, L., Sun, X., Luo, Y., Yan, B., … Zhou, J. (2015). CYLD regulates noscapine activity in acute lymphoblastic leukemia via a microtubule-dependent mechanism. Theranostics, 5, 656-666. https://doi.org/10.7150/thno.10844
Yang, Y., & Zhou, J. (2016). CYLD - A deubiquitylase that acts to fine-tune microtubule properties and functions. Journal of Cell Science, 129, 2289-2295. https://doi.org/10.1242/jcs.183319
Yoshimura, Y., Yamauchi, Y., Shinkawa, T., Taoka, M., Donai, H., Takahashi, N., … Yamauchi, T. (2004). Molecular constituents of the postsynaptic density fraction revealed by proteomic analysis using multidimensional liquid chromatography-tandem mass spectrometry. Journal of Neurochemistry, 88, 759-768.

Auteurs

Jun Li (J)

Department of Cellular Neurobiology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan.

Yoko Sekine-Aizawa (Y)

Department of Cellular Neurobiology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan.

Saman Ebrahimi (S)

Department of Cellular Neurobiology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan.

Shinji Tanaka (S)

Department of Cellular Neurobiology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan.

Shigeo Okabe (S)

Department of Cellular Neurobiology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan.

Articles similaires

Robotic Surgical Procedures Animals Humans Telemedicine Models, Animal

Odour generalisation and detection dog training.

Lyn Caldicott, Thomas W Pike, Helen E Zulch et al.
1.00
Animals Odorants Dogs Generalization, Psychological Smell
Animals TOR Serine-Threonine Kinases Colorectal Neoplasms Colitis Mice
Animals Tail Swine Behavior, Animal Animal Husbandry

Classifications MeSH