Activation of the calcium sensing receptor attenuates TRPV6-dependent intestinal calcium absorption.
Animals
Calcimimetic Agents
/ adverse effects
Calcium
/ agonists
Calcium Channels
/ genetics
Cinacalcet
/ adverse effects
Disease Models, Animal
Estrenes
/ pharmacology
Female
Gene Knock-In Techniques
Humans
Hypercalcemia
/ chemically induced
Hyperparathyroidism, Secondary
/ chemically induced
Hypocalcemia
/ chemically induced
Intestinal Absorption
/ drug effects
Intestinal Mucosa
/ drug effects
Kidney Tubules
/ metabolism
Male
Mice
Mice, Transgenic
Oocytes
Parathyroid Hormone
/ metabolism
Patch-Clamp Techniques
Phosphodiesterase Inhibitors
/ pharmacology
Pyrrolidinones
/ pharmacology
Receptors, Calcium-Sensing
/ agonists
TRPV Cation Channels
/ genetics
Type C Phospholipases
/ antagonists & inhibitors
Xenopus
Calcium
Calcium channels
Gastroenterology
Nephrology
Journal
JCI insight
ISSN: 2379-3708
Titre abrégé: JCI Insight
Pays: United States
ID NLM: 101676073
Informations de publication
Date de publication:
23 04 2019
23 04 2019
Historique:
entrez:
24
4
2019
pubmed:
24
4
2019
medline:
21
10
2020
Statut:
epublish
Résumé
Plasma calcium (Ca2+) is maintained by amending the release of parathyroid hormone and through direct effects of the Ca2+ sensing receptor (CaSR) in the renal tubule. Combined, these mechanisms alter intestinal Ca2+ absorption by modulating 1,25-dihydroxy vitamin D3 production, bone resorption, and renal Ca2+ excretion. The CaSR is a therapeutic target in the treatment of secondary hyperparathyroidism and hypocalcemia a common complication of calcimimetic therapy. The CaSR is also expressed in intestinal epithelium, however, a direct role in regulating local intestinal Ca2+ absorption is unknown. Chronic CaSR activation decreased expression of genes involved in Ca2+ absorption. In Ussing chambers, increasing extracellular Ca2+ or basolateral application of the calcimimetic cinacalcet decreased net Ca2+ absorption across intestinal preparations acutely. Conversely, Ca2+ absorption increased with decreasing extracellular Ca2+ concentration. These responses were absent in mice expressing a non-functional TRPV6, TRPV6D541A. Cinacalcet also attenuated Ca2+ fluxes through TRPV6 in Xenopus oocytes when co-expressed with the CaSR. Moreover, the phospholipase C inhibitor, U73122, prevented cinacalcet-mediated inhibition of Ca2+ flux. These results reveal a regulatory pathway whereby activation of the CaSR in the basolateral membrane of the intestine directly attenuates local Ca2+ absorption via TRPV6 to prevent hypercalcemia and help explain how calcimimetics induce hypocalcemia.
Identifiants
pubmed: 31013259
pii: 128013
doi: 10.1172/jci.insight.128013
pmc: PMC6629117
doi:
pii:
Substances chimiques
Calcimimetic Agents
0
Calcium Channels
0
Estrenes
0
Parathyroid Hormone
0
Phosphodiesterase Inhibitors
0
Pyrrolidinones
0
Receptors, Calcium-Sensing
0
TRPV Cation Channels
0
Trpv6 protein, mouse
0
1-(6-((3-methoxyestra-1,3,5(10)-trien-17-yl)amino)hexyl)-1H-pyrrole-2,5-dione
112648-68-7
Type C Phospholipases
EC 3.1.4.-
Calcium
SY7Q814VUP
Cinacalcet
UAZ6V7728S
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Références
J Biol Chem. 1999 Aug 6;274(32):22739-46
pubmed: 10428857
Am J Physiol. 1999 Sep;277(3):G662-70
pubmed: 10484392
J Histochem Cytochem. 2000 May;48(5):595-602
pubmed: 10769043
J Am Soc Nephrol. 2001 Jul;12(7):1342-9
pubmed: 11423563
Proc Natl Acad Sci U S A. 2001 Nov 6;98(23):13324-9
pubmed: 11687634
Biochem Biophys Res Commun. 2001 Dec 21;289(5):1287-94
pubmed: 11741335
J Physiol. 2001 Dec 15;537(Pt 3):747-61
pubmed: 11744752
Am J Physiol Gastrointest Liver Physiol. 2002 Jul;283(1):G240-50
pubmed: 12065312
Am J Physiol Gastrointest Liver Physiol. 2002 Sep;283(3):G618-25
pubmed: 12181175
Am J Physiol Gastrointest Liver Physiol. 2003 Jul;285(1):G78-85
pubmed: 12620887
Endocrinology. 2003 Sep;144(9):3885-94
pubmed: 12933662
N Engl J Med. 2004 Apr 8;350(15):1516-25
pubmed: 15071126
J Biol Chem. 2004 Aug 27;279(35):36546-52
pubmed: 15184369
Physiol Rev. 2005 Jan;85(1):373-422
pubmed: 15618484
Proc Natl Acad Sci U S A. 2006 Jun 20;103(25):9390-7
pubmed: 16760252
J Bone Miner Res. 2006 Nov;21(11):1770-7
pubmed: 17002582
Am J Physiol Renal Physiol. 2007 Mar;292(3):F1073-81
pubmed: 17122384
Endocrinology. 2008 Jun;149(6):3196-205
pubmed: 18325990
J Biol Chem. 2008 May 30;283(22):14980-7
pubmed: 18390907
EMBO J. 2008 Nov 5;27(21):2809-16
pubmed: 18923420
Pflugers Arch. 2009 May;458(1):99-109
pubmed: 18989697
Mol Pharmacol. 2009 Mar;75(3):608-16
pubmed: 19073818
J Cell Physiol. 2009 Apr;219(1):132-42
pubmed: 19097033
Cell Calcium. 2009 Apr;45(4):331-9
pubmed: 19157541
Gastroenterology. 2009 Apr;136(4):1317-27, e1-2
pubmed: 19254681
J Am Soc Nephrol. 2009 Aug;20(8):1693-704
pubmed: 19423690
J Am Soc Nephrol. 2009 Nov;20(11):2371-9
pubmed: 19713312
J Cell Biochem. 2009 Dec 1;108(5):1175-83
pubmed: 19777446
Sci Signal. 2011 May 03;4(171):ra27
pubmed: 21540454
Mol Cell Endocrinol. 2011 Dec 5;347(1-2):25-9
pubmed: 21664413
FASEB J. 2011 Nov;25(11):3915-28
pubmed: 21810903
Am J Physiol Renal Physiol. 2012 Apr 15;302(8):F943-56
pubmed: 21937605
EMBO J. 2012 Apr 18;31(8):1999-2012
pubmed: 22373575
J Bone Miner Res. 2012 Oct;27(10):2097-107
pubmed: 22589201
Am J Physiol Gastrointest Liver Physiol. 2012 Oct;303(7):G879-85
pubmed: 22878123
J Clin Invest. 2012 Sep;122(9):3355-67
pubmed: 22886306
Am J Physiol Renal Physiol. 2013 Mar 15;304(6):F761-9
pubmed: 23283989
J Biol Chem. 2013 Jun 7;288(23):16629-44
pubmed: 23612980
Am J Physiol Gastrointest Liver Physiol. 2013 Aug 15;305(4):G303-13
pubmed: 23764894
Best Pract Res Clin Endocrinol Metab. 2013 Jun;27(3):315-31
pubmed: 23856262
Best Pract Res Clin Endocrinol Metab. 2013 Jun;27(3):333-43
pubmed: 23856263
Scand J Gastroenterol. 1990 Jul;25(7):705-10
pubmed: 2396084
J Am Soc Nephrol. 2014 Apr;25(4):745-60
pubmed: 24335970
FEBS Lett. 2014 Nov 17;588(22):4158-66
pubmed: 24842610
Cell Calcium. 2015 Jan;57(1):38-48
pubmed: 25477137
Nat Rev Endocrinol. 2015 May;11(5):298-307
pubmed: 25752283
Vitam Horm. 2015;98:407-40
pubmed: 25817876
Physiology (Bethesda). 2015 Jul;30(4):317-26
pubmed: 26136545
Pharmacoepidemiol Drug Saf. 2015 Oct;24(10):1058-67
pubmed: 26238994
Rev Endocr Metab Disord. 2015 Jun;16(2):165-74
pubmed: 26296372
Pflugers Arch. 2016 Feb;468(2):293-303
pubmed: 26497703
Am J Physiol Renal Physiol. 2016 Jan 15;310(2):F144-51
pubmed: 26608788
Am J Physiol Renal Physiol. 2016 Jun 1;310(11):F1337-50
pubmed: 27009338
Compr Physiol. 2016 Mar 15;6(2):561-601
pubmed: 27065162
F1000Res. 2015 Dec 18;4:null
pubmed: 27081473
Front Physiol. 2016 Jun 21;7:245
pubmed: 27458380
Proc Natl Acad Sci U S A. 2017 Apr 18;114(16):E3344-E3353
pubmed: 28373577
Mol Cell Endocrinol. 2017 Sep 15;453:36-45
pubmed: 28400273
Am J Physiol. 1986 May;250(5 Pt 1):G561-9
pubmed: 2939728
Kidney Int. 2018 Jun;93(6):1475-1482
pubmed: 29525393
Nat Commun. 2018 Jun 13;9(1):2302
pubmed: 29899465
J Clin Endocrinol Metab. 1987 Jan;64(1):43-50
pubmed: 3782435
Am J Physiol. 1985 Feb;248(2 Pt 1):G147-57
pubmed: 3881991
Am J Physiol. 1969 Jul;217(1):121-5
pubmed: 5785867
Am J Physiol. 1981 May;240(5):G350-4
pubmed: 6786109
Am J Physiol. 1980 Feb;238(2):G75-8
pubmed: 7361902
Scand J Gastroenterol. 1980;15(1):55-60
pubmed: 7367822
Nat Genet. 1995 Dec;11(4):389-94
pubmed: 7493018
Biochem Biophys Res Commun. 1995 Jul 26;212(3):861-7
pubmed: 7626122
Dig Dis Sci. 1993 Oct;38(10):1815-24
pubmed: 8404402
Am J Physiol. 1997 Oct;273(4):C1168-75
pubmed: 9357760
Am J Physiol. 1998 Jan;274(1):G122-30
pubmed: 9458781
J Nutr. 1999 Jan;129(1):9-12
pubmed: 9915868
Gastroenterology. 1976 Dec;71(6):1039-42
pubmed: 992264