Interchromosomal template-switching as a novel molecular mechanism for imprinting perturbations associated with Temple syndrome.
Absence of heterozygosity (AOH)
Complex genomic rearrangement
DUP-TRP/INV-DUP
ES
Inter-homologous chromosomal template switch
MMBIR
Replicative-based mechanism
Runs of homozygosity (ROH)
Triplication
Journal
Genome medicine
ISSN: 1756-994X
Titre abrégé: Genome Med
Pays: England
ID NLM: 101475844
Informations de publication
Date de publication:
23 04 2019
23 04 2019
Historique:
received:
12
12
2018
accepted:
02
04
2019
entrez:
25
4
2019
pubmed:
25
4
2019
medline:
28
12
2019
Statut:
epublish
Résumé
Intrachromosomal triplications (TRP) can contribute to disease etiology via gene dosage effects, gene disruption, position effects, or fusion gene formation. Recently, post-zygotic de novo triplications adjacent to copy-number neutral genomic intervals with runs of homozygosity (ROH) have been shown to result in uniparental isodisomy (UPD). The genomic structure of these complex genomic rearrangements (CGRs) shows a consistent pattern of an inverted triplication flanked by duplications (DUP-TRP/INV-DUP) formed by an iterative DNA replisome template-switching mechanism during replicative repair of a single-ended, double-stranded DNA (seDNA), the ROH results from an interhomolog or nonsister chromatid template switch. It has been postulated that these CGRs may lead to genetic abnormalities in carriers due to dosage-sensitive genes mapping within the copy-number variant regions, homozygosity for alleles at a locus causing an autosomal recessive (AR) disease trait within the ROH region, or imprinting-associated diseases. Here, we report a family wherein the affected subject carries a de novo 2.2-Mb TRP followed by 42.2 Mb of ROH and manifests clinical features overlapping with those observed in association with chromosome 14 maternal UPD (UPD(14)mat). UPD(14)mat can cause clinical phenotypic features enabling a diagnosis of Temple syndrome. This CGR was then molecularly characterized by high-density custom aCGH, genome-wide single-nucleotide polymorphism (SNP) and methylation arrays, exome sequencing (ES), and the Oxford Nanopore long-read sequencing technology. We confirmed the postulated DUP-TRP/INV-DUP structure by multiple orthogonal genomic technologies in the proband. The methylation status of known differentially methylated regions (DMRs) on chromosome 14 revealed that the subject shows the typical methylation pattern of UPD(14)mat. Consistent with these molecular findings, the clinical features overlap with those observed in Temple syndrome, including speech delay. These data provide experimental evidence that, in humans, triplication can lead to segmental UPD and imprinting disease. Importantly, genotype/phenotype analyses further reveal how a post-zygotically generated complex structural variant, resulting from a replication-based mutational mechanism, contributes to expanding the clinical phenotype of known genetic syndromes. Mechanistically, such events can distort transmission genetics resulting in homozygosity at a locus for which only one parent is a carrier as well as cause imprinting diseases.
Sections du résumé
BACKGROUND
Intrachromosomal triplications (TRP) can contribute to disease etiology via gene dosage effects, gene disruption, position effects, or fusion gene formation. Recently, post-zygotic de novo triplications adjacent to copy-number neutral genomic intervals with runs of homozygosity (ROH) have been shown to result in uniparental isodisomy (UPD). The genomic structure of these complex genomic rearrangements (CGRs) shows a consistent pattern of an inverted triplication flanked by duplications (DUP-TRP/INV-DUP) formed by an iterative DNA replisome template-switching mechanism during replicative repair of a single-ended, double-stranded DNA (seDNA), the ROH results from an interhomolog or nonsister chromatid template switch. It has been postulated that these CGRs may lead to genetic abnormalities in carriers due to dosage-sensitive genes mapping within the copy-number variant regions, homozygosity for alleles at a locus causing an autosomal recessive (AR) disease trait within the ROH region, or imprinting-associated diseases.
METHODS
Here, we report a family wherein the affected subject carries a de novo 2.2-Mb TRP followed by 42.2 Mb of ROH and manifests clinical features overlapping with those observed in association with chromosome 14 maternal UPD (UPD(14)mat). UPD(14)mat can cause clinical phenotypic features enabling a diagnosis of Temple syndrome. This CGR was then molecularly characterized by high-density custom aCGH, genome-wide single-nucleotide polymorphism (SNP) and methylation arrays, exome sequencing (ES), and the Oxford Nanopore long-read sequencing technology.
RESULTS
We confirmed the postulated DUP-TRP/INV-DUP structure by multiple orthogonal genomic technologies in the proband. The methylation status of known differentially methylated regions (DMRs) on chromosome 14 revealed that the subject shows the typical methylation pattern of UPD(14)mat. Consistent with these molecular findings, the clinical features overlap with those observed in Temple syndrome, including speech delay.
CONCLUSIONS
These data provide experimental evidence that, in humans, triplication can lead to segmental UPD and imprinting disease. Importantly, genotype/phenotype analyses further reveal how a post-zygotically generated complex structural variant, resulting from a replication-based mutational mechanism, contributes to expanding the clinical phenotype of known genetic syndromes. Mechanistically, such events can distort transmission genetics resulting in homozygosity at a locus for which only one parent is a carrier as well as cause imprinting diseases.
Identifiants
pubmed: 31014393
doi: 10.1186/s13073-019-0633-y
pii: 10.1186/s13073-019-0633-y
pmc: PMC6480824
doi:
Types de publication
Case Reports
Journal Article
Research Support, N.I.H., Extramural
Langues
eng
Sous-ensembles de citation
IM
Pagination
25Subventions
Organisme : NICHD NIH HHS
ID : R03 HD092569
Pays : United States
Organisme : NINDS NIH HHS
ID : R35 NS105078
Pays : United States
Organisme : NICHD NIH HHS
ID : U54 HD083092
Pays : United States
Organisme : NHGRI NIH HHS
ID : UM1 HG006542
Pays : United States
Références
Am J Hum Genet. 2012 Oct 5;91(4):597-607
pubmed: 23040492
Genome Res. 2009 Sep;19(9):1553-61
pubmed: 19602639
Am J Med Genet A. 2015 Oct;167A(10):2327-33
pubmed: 26061664
Hum Mol Genet. 2009 Oct 1;18(19):3605-14
pubmed: 19584086
J Med Genet. 2014 Aug;51(8):495-501
pubmed: 24891339
Clin Genet. 2018 Jun;93(6):1179-1188
pubmed: 29468661
Clin Genet. 2000 Aug;58(2):134-41
pubmed: 11005147
Hum Mutat. 2013 Aug;34(8):1080-4
pubmed: 23649991
Nucleic Acids Res. 2017 Feb 28;45(4):1633-1648
pubmed: 27980096
Genet Med. 2018 Dec;20(12):1528-1537
pubmed: 29790871
Eur J Med Genet. 2015 Oct;58(10):503-8
pubmed: 26327614
Am J Med Genet A. 2016 Sep;170(9):2365-71
pubmed: 27286879
Nat Methods. 2018 Jun;15(6):461-468
pubmed: 29713083
J Med Genet. 1991 Aug;28(8):511-4
pubmed: 1681108
Am J Med Genet A. 2006 Oct 1;140(19):2039-49
pubmed: 16906536
Nat Rev Genet. 2016 Apr;17(4):224-38
pubmed: 26924765
Am J Hum Genet. 2015 Apr 2;96(4):555-64
pubmed: 25799105
Genome Res. 2014 Apr;24(4):554-69
pubmed: 24402520
Genet Med. 2006 Dec;8(12):784-92
pubmed: 17172942
Nature. 2016 Oct 13;538(7624):265-269
pubmed: 27706140
BMC Bioinformatics. 2014 Jan 29;15:30
pubmed: 24475911
Am J Med Genet A. 2009 Oct;149A(10):2274-9
pubmed: 19764020
Am J Med Genet A. 2017 Apr;173(4):1056-1060
pubmed: 28328127
Cell. 2017 Feb 23;168(5):830-842.e7
pubmed: 28235197
Nat Genet. 2011 Oct 02;43(11):1074-81
pubmed: 21964572
Brain. 2005 Apr;128(Pt 4):743-51
pubmed: 15689360
Cell. 2015 May 21;161(5):1012-1025
pubmed: 25959774
Ann Neurol. 2004 Feb;55(2):174-9
pubmed: 14755720
J Clin Endocrinol Metab. 2017 May 1;102(5):1557-1567
pubmed: 28324015
PLoS Genet. 2009 Jan;5(1):e1000327
pubmed: 19180184
Am J Med Genet A. 2008 Jun 1;146A(11):1395-405
pubmed: 18412278
Bioinformatics. 2018 Mar 1;34(5):867-868
pubmed: 29096012
Nucleic Acids Res. 2012 Jul;40(Web Server issue):W452-7
pubmed: 22689647
Am J Med Genet. 2000 Aug 28;93(5):381-7
pubmed: 10951461
Nat Methods. 2010 Aug;7(8):575-6
pubmed: 20676075
Hum Mol Genet. 2011 May 15;20(10):1975-88
pubmed: 21355048
Hum Mutat. 2016 Feb;37(2):160-4
pubmed: 26549411
Genome Biol. 2011 Jul 25;12(7):R68
pubmed: 21787409
J Med Genet. 2010 Apr;47(4):271-5
pubmed: 19752158
Genet Med. 2005 Jul-Aug;7(6):422-32
pubmed: 16024975
Am J Hum Genet. 1999 Jun;64(6):1702-8
pubmed: 10330358
Am J Med Genet A. 2013 Aug;161A(8):1904-9
pubmed: 23824987
Genet Med. 2013 Mar;15(3):172-3
pubmed: 23037932
Am J Hum Genet. 2014 Mar 6;94(3):462-9
pubmed: 24530202
Hum Genet. 2003 Oct;113(5):447-51
pubmed: 12938037
Nat Genet. 2014 Mar;46(3):310-5
pubmed: 24487276
Am J Med Genet A. 2008 May 1;146A(9):1190-4
pubmed: 18386805
Eur J Hum Genet. 2014 Jan;22(1):79-87
pubmed: 23695279
Cell. 2007 Dec 28;131(7):1235-47
pubmed: 18160035
Nat Methods. 2010 Apr;7(4):248-9
pubmed: 20354512
Genome Med. 2017 Mar 21;9(1):26
pubmed: 28327206
Am J Med Genet A. 2015 Feb;167A(2):345-53
pubmed: 25756153
Hum Genet. 2016 Feb;135(2):253-6
pubmed: 26667017
Nature. 2007 May 3;447(7140):102-5
pubmed: 17410126
PLoS Genet. 2015 Mar 06;11(3):e1005050
pubmed: 25749076
J Med Genet. 2011 Sep;48(9):635-9
pubmed: 21617255
Nat Genet. 2008 Feb;40(2):237-42
pubmed: 18176563
Nat Methods. 2017 Apr;14(4):407-410
pubmed: 28218898
Nat Genet. 2013 Nov;45(11):1319-26
pubmed: 24056715
Am J Med Genet A. 2013 Sep;161A(9):2174-82
pubmed: 23913548
BMC Bioinformatics. 2012 Jan 12;13:8
pubmed: 22239737
Am J Med Genet A. 2016 Jan;170A(1):170-5
pubmed: 26395259
Bioinformatics. 2018 Sep 15;34(18):3094-3100
pubmed: 29750242
Am J Hum Genet. 1992 Apr;50(4):690-9
pubmed: 1347967
Eur J Hum Genet. 2015 Jan;23(1):61-6
pubmed: 24713661
Brief Bioinform. 2013 Mar;14(2):178-92
pubmed: 22517427
Eur J Hum Genet. 2017 Aug;25(8):935-945
pubmed: 28635951
Neurology. 2007 Mar 20;68(12):916-22
pubmed: 17251522