Non-Invasive Ventilation in Neonatology.
Continuous Positive Airway Pressure
Humans
Infant, Newborn
Infant, Premature
Intermittent Positive-Pressure Ventilation
/ methods
Meta-Analysis as Topic
Neonatology
Noninvasive Ventilation
/ methods
Randomized Controlled Trials as Topic
Respiratory Distress Syndrome, Newborn
/ therapy
Treatment Outcome
Journal
Deutsches Arzteblatt international
ISSN: 1866-0452
Titre abrégé: Dtsch Arztebl Int
Pays: Germany
ID NLM: 101475967
Informations de publication
Date de publication:
08 03 2019
08 03 2019
Historique:
received:
29
05
2018
revised:
29
05
2018
accepted:
21
01
2019
entrez:
25
4
2019
pubmed:
25
4
2019
medline:
15
4
2020
Statut:
ppublish
Résumé
Invasive mechanical ventilation (IMV) has been replaced by early continuous positive airway pressure (CPAP) in the treatment of respiratory distress syndrome (RDS) in preterm infants aiming to reduce the rate of bronchopulmonary dysplasia (BPD). Subsequently, modern non-invasive ventilation strategies (NIV) were introduced into clinical practice with limited evidence of effects on pulmonary and neurodevelopmental outcomes. We performed a selective literature search in PubMed including randomized controlled trials (RCT) (n ≥ 200) and meta-analyses published in the field of NIV in neonatology and follow-up studies focusing on long term pulmonary and neurodevelopmental outcomes. Individual studies do not show a significant risk reduction for the combined endpoint death or BPD in preterm infants caused by early CPAP in RDS when compared to primary intubation. One meta-analysis comparing four studies found CPAP significantly reduces the risk of BPD or death (relative risk: 0.91; 95% confidence interval [0.84;0.99]). Nasal intermittent positive pressure ventilation (NIPPV) as a primary ventilation strategy reduces the rate of intubations in infants with RDS (RR: 0.78 [0.64;0.94]) when compared to CPAP but does not affect the rate of BPD (RR: 0.78 [0.58;1.06]). Early CPAP reduces the need for IMV and the risk of BPD or death in preterm infants with RDS. NIPPV may offer advantages over CPAP regarding intubation rates. Networking-based follow-up programs are required to assess the effect of NIV on long term pulmonary and neurodevelopmental outcomes.
Sections du résumé
BACKGROUND
Invasive mechanical ventilation (IMV) has been replaced by early continuous positive airway pressure (CPAP) in the treatment of respiratory distress syndrome (RDS) in preterm infants aiming to reduce the rate of bronchopulmonary dysplasia (BPD). Subsequently, modern non-invasive ventilation strategies (NIV) were introduced into clinical practice with limited evidence of effects on pulmonary and neurodevelopmental outcomes.
METHODS
We performed a selective literature search in PubMed including randomized controlled trials (RCT) (n ≥ 200) and meta-analyses published in the field of NIV in neonatology and follow-up studies focusing on long term pulmonary and neurodevelopmental outcomes.
RESULTS
Individual studies do not show a significant risk reduction for the combined endpoint death or BPD in preterm infants caused by early CPAP in RDS when compared to primary intubation. One meta-analysis comparing four studies found CPAP significantly reduces the risk of BPD or death (relative risk: 0.91; 95% confidence interval [0.84;0.99]). Nasal intermittent positive pressure ventilation (NIPPV) as a primary ventilation strategy reduces the rate of intubations in infants with RDS (RR: 0.78 [0.64;0.94]) when compared to CPAP but does not affect the rate of BPD (RR: 0.78 [0.58;1.06]).
CONCLUSION
Early CPAP reduces the need for IMV and the risk of BPD or death in preterm infants with RDS. NIPPV may offer advantages over CPAP regarding intubation rates. Networking-based follow-up programs are required to assess the effect of NIV on long term pulmonary and neurodevelopmental outcomes.
Identifiants
pubmed: 31014448
pii: arztebl.2019.0177
doi: 10.3238/arztebl.2019.0177
pmc: PMC6503172
doi:
pii:
Types de publication
Journal Article
Review
Langues
eng
Sous-ensembles de citation
IM
Pagination
177-183Références
Am J Respir Crit Care Med. 2001 Jun;163(7):1723-9
pubmed: 11401896
N Engl J Med. 2005 Oct 20;353(16):1711-23
pubmed: 16236742
Pediatrics. 2005 Dec;116(6):1353-60
pubmed: 16322158
J Allergy Clin Immunol. 2006 Oct;118(4):823-30
pubmed: 17030233
Clin Perinatol. 2007 Mar;34(1):73-92, vi
pubmed: 17394931
Crit Care Med. 2008 Jan;36(1):183-7
pubmed: 18090370
N Engl J Med. 2008 Feb 14;358(7):700-8
pubmed: 18272893
Pediatrics. 2009 Jan;123(1):137-42
pubmed: 19117872
Respir Med. 2009 Oct;103(10):1400-5
pubmed: 19467849
Respir Care. 2009 Sep;54(9):1209-35
pubmed: 19712498
Semin Fetal Neonatal Med. 2009 Dec;14(6):358-66
pubmed: 19783238
J Pediatr. 2010 Jul;157(1):69-73
pubmed: 20304417
Pediatrics. 2010 Jun;125(6):e1402-9
pubmed: 20439601
N Engl J Med. 2010 May 27;362(21):1970-9
pubmed: 20472939
Neonatology. 2011;99(2):112-7
pubmed: 20733331
Pediatrics. 2011 Nov;128(5):e1069-76
pubmed: 22025591
JAMA. 2011 Dec 7;306(21):2348-58
pubmed: 22147379
BMC Pediatr. 2012 Feb 22;12:17
pubmed: 22356724
J Pediatr. 2012 Jul;161(1):75-80.e1
pubmed: 22402568
Neonatology. 2012;102(4):300-8
pubmed: 22964658
N Engl J Med. 2012 Dec 27;367(26):2495-504
pubmed: 23268664
Dtsch Arztebl Int. 2013 Mar;110(13):227-35; quiz 236
pubmed: 23596503
Eur J Pediatr. 2014 Feb;173(2):181-6
pubmed: 23955516
Neonatology. 2013;104(3):203-9
pubmed: 23989138
N Engl J Med. 2013 Oct 10;369(15):1425-33
pubmed: 24106935
BMJ. 2013 Oct 17;347:f5980
pubmed: 24136633
Birth Defects Res A Clin Mol Teratol. 2014 Mar;100(3):145-57
pubmed: 24639412
J Pediatr. 2014 Aug;165(2):240-249.e4
pubmed: 24725582
Cochrane Database Syst Rev. 2014 May 13;(5):CD001145
pubmed: 24825542
Arch Dis Child Fetal Neonatal Ed. 2015 Jan;100(1):F17-23
pubmed: 25318667
Arch Dis Child Fetal Neonatal Ed. 2016 Jan;101(1):F21-5
pubmed: 26162889
JAMA. 2015 Aug 11;314(6):595-603
pubmed: 26262797
JAMA. 2015 Sep 8;314(10):1039-51
pubmed: 26348753
Pneumologie. 2015 Dec;69(12):719-756
pubmed: 26649598
Cochrane Database Syst Rev. 2016 Feb 22;2:CD006405
pubmed: 26899543
Semin Fetal Neonatal Med. 2016 Jun;21(3):146-53
pubmed: 26922562
Semin Fetal Neonatal Med. 2016 Jun;21(3):204-11
pubmed: 26948884
Semin Fetal Neonatal Med. 2016 Jun;21(3):189-95
pubmed: 26948885
Mol Cell Pediatr. 2016 Dec;3(1):23
pubmed: 27357257
JAMA Pediatr. 2016 Aug 8;:null
pubmed: 27532363
Neonatology. 2017;111(2):107-125
pubmed: 27649091
N Engl J Med. 2016 Sep 22;375(12):1142-51
pubmed: 27653564
Clin Perinatol. 2016 Dec;43(4):707-724
pubmed: 27837754
Clin Perinatol. 2016 Dec;43(4):725-740
pubmed: 27837755
Clin Perinatol. 2016 Dec;43(4):755-771
pubmed: 27837757
Clin Perinatol. 2016 Dec;43(4):799-816
pubmed: 27837760
Cochrane Database Syst Rev. 2016 Dec 15;12:CD005384
pubmed: 27976361
Cochrane Database Syst Rev. 2017 Feb 01;2:CD003212
pubmed: 28146296
N Engl J Med. 2017 Feb 16;376(7):617-628
pubmed: 28199816
Cochrane Database Syst Rev. 2017 Mar 21;3:CD004454
pubmed: 28321847
Lancet. 2017 Apr 22;389(10079):1649-1659
pubmed: 28443559
Eur J Pediatr. 2017 Dec;176(12):1587-1593
pubmed: 28889192
Matern Health Neonatol Perinatol. 2017 Sep 6;3:15
pubmed: 28904810
Respir Med. 2017 Oct;131:210-214
pubmed: 28947032
N Engl J Med. 2017 Oct 19;377(16):1601-1602
pubmed: 29045215
Cochrane Database Syst Rev. 2017 Oct 24;10:CD001146
pubmed: 29063585
Neonatology. 2018;113(3):235-241
pubmed: 29393237
N Engl J Med. 1971 Jun 17;284(24):1333-40
pubmed: 4930602
Arch Dis Child Fetal Neonatal Ed. 1997 Sep;77(2):F147-50
pubmed: 9377142