Salmonella invasion is controlled through the secondary structure of the hilD transcript.
Animals
Bacterial Proteins
/ chemistry
Base Sequence
Female
Gene Expression Regulation, Bacterial
Mice
Mice, Inbred BALB C
Mutation
Nucleic Acid Conformation
RNA Stability
RNA, Bacterial
/ chemistry
RNA, Messenger
/ chemistry
Salmonella Infections
/ genetics
Salmonella typhimurium
/ pathogenicity
Transcription Factors
/ chemistry
Transcription, Genetic
Virulence
Journal
PLoS pathogens
ISSN: 1553-7374
Titre abrégé: PLoS Pathog
Pays: United States
ID NLM: 101238921
Informations de publication
Date de publication:
04 2019
04 2019
Historique:
received:
03
01
2019
accepted:
12
03
2019
revised:
06
05
2019
pubmed:
25
4
2019
medline:
19
10
2019
entrez:
25
4
2019
Statut:
epublish
Résumé
Virulence functions of bacterial pathogens are often energetically costly and thus are subjected to intricate regulatory mechanisms. In Salmonella, invasion of the intestinal epithelium, an essential early step in virulence, requires the production of a multi-protein type III secretion apparatus. The pathogen mitigates the overall cost of invasion by inducing it in only a fraction of its population. This constitutes a successful virulence strategy as invasion by a small number is sufficient to promote the proliferation of the non-invading majority. Such a system suggests the existence of a sensitive triggering mechanism that permits only a minority of Salmonella to reach a threshold of invasion-gene induction. We show here that the secondary structure of the invasion regulator hilD message provides such a trigger. The 5' end of the hilD mRNA is predicted to contain two mutually exclusive stem-loop structures, the first of which (SL1) overlaps the ribosome-binding site and the ORF start codon. Changes that reduce its stability enhance invasion gene expression, while those that increase stability reduce invasion. Conversely, disrupting the second stem-loop (SL2) represses invasion genes. Although SL2 is the energetically more favorable, repression through SL1 is enhanced by binding of the global regulator CsrA. This system thus alters the levels of hilD mRNA and is so sensitive that changing a single base pair within SL1, predicted to augment its stability, eliminates expression of invasion genes and significantly reduces Salmonella virulence in mice. This system thus provides a possible means to rapidly and finely tune an essential virulence function.
Identifiants
pubmed: 31017982
doi: 10.1371/journal.ppat.1007700
pii: PPATHOGENS-D-18-02496
pmc: PMC6502421
doi:
Substances chimiques
Bacterial Proteins
0
HilD protein, Salmonella typhimurium
0
RNA, Bacterial
0
RNA, Messenger
0
Transcription Factors
0
Types de publication
Journal Article
Research Support, N.I.H., Extramural
Research Support, U.S. Gov't, Non-P.H.S.
Langues
eng
Sous-ensembles de citation
IM
Pagination
e1007700Subventions
Organisme : NIAID NIH HHS
ID : T35 AI007227
Pays : United States
Déclaration de conflit d'intérêts
The authors have declared that no competing interests exist.
Références
Nature. 2008 Aug 21;454(7207):987-90
pubmed: 18719588
Nat Biotechnol. 2013 Mar;31(3):233-9
pubmed: 23360965
Nature. 2010 Sep 23;467(7314):426-9
pubmed: 20864996
Cell. 1994 Feb 25;76(4):717-24
pubmed: 8124710
Infect Immun. 2000 Dec;68(12):6790-7
pubmed: 11083797
Nature. 2013 Feb 21;494(7437):353-6
pubmed: 23426324
Mol Microbiol. 2011 Jun;80(6):1637-56
pubmed: 21518393
PLoS Pathog. 2017 Jan 5;13(1):e1006129
pubmed: 28056091
Mol Microbiol. 1994 Aug;13(4):555-68
pubmed: 7997169
PLoS Pathog. 2010 Jul 29;6(7):e1001025
pubmed: 20686667
Microbiol Mol Biol Rev. 2015 Jun;79(2):193-224
pubmed: 25833324
J Bacteriol. 1993 Aug;175(15):4744-55
pubmed: 8393005
Mol Microbiol. 2000 Feb;35(3):635-46
pubmed: 10672185
Infect Immun. 2018 Dec 19;87(1):
pubmed: 30396895
J Bacteriol. 2008 Jan;190(2):476-86
pubmed: 17993530
J Bacteriol. 2003 Sep;185(17):5096-108
pubmed: 12923082
J Bacteriol. 2003 Dec;185(24):7257-65
pubmed: 14645287
Front Microbiol. 2015 Sep 09;6:949
pubmed: 26441883
Prog Nucleic Acid Res Mol Biol. 1990;38:1-35
pubmed: 2183291
Mol Microbiol. 1995 Nov;18(4):715-27
pubmed: 8817493
Proc Natl Acad Sci U S A. 2000 Jun 6;97(12):6640-5
pubmed: 10829079
Mol Microbiol. 1999 May;32(3):629-42
pubmed: 10320584
J Bacteriol. 2007 Oct;189(19):6882-90
pubmed: 17675384
Mol Microbiol. 2001 Jan;39(1):79-88
pubmed: 11123690
Mol Microbiol. 2002 Dec;46(5):1451-64
pubmed: 12453229
Microb Pathog. 2001 Feb;30(2):81-90
pubmed: 11162188
Infect Immun. 2005 Mar;73(3):1377-85
pubmed: 15731035
Curr Opin Microbiol. 2007 Feb;10(1):24-9
pubmed: 17208038
Int J Med Microbiol. 2016 Dec;306(8):604-610
pubmed: 27760693
Mol Microbiol. 2013 Mar;87(5):1045-60
pubmed: 23289537
Proc Natl Acad Sci U S A. 2011 Oct 18;108(42):17480-5
pubmed: 21969563
Infect Immun. 2006 Jan;74(1):331-9
pubmed: 16368988
mBio. 2016 Feb 16;7(1):e02170-15
pubmed: 26884427