4D anisotropic skeletal muscle tissue constructs fabricated by staircase effect strategy.
Journal
Biofabrication
ISSN: 1758-5090
Titre abrégé: Biofabrication
Pays: England
ID NLM: 101521964
Informations de publication
Date de publication:
24 06 2019
24 06 2019
Historique:
pubmed:
27
4
2019
medline:
11
1
2020
entrez:
27
4
2019
Statut:
epublish
Résumé
Like the morphology of native tissue fiber arrangement (such as skeletal muscle), unidirectional anisotropic scaffolds are highly desired as a means to guide cell behavior in anisotropic tissue engineering. In contrast, contour-like staircases exhibit directional topographical cues and are judged as an inevitable defect of fused deposition modeling (FDM). In this study, we will translate this staircase defect into an effective bioengineering strategy by integrating FDM with surface coating technique (FCT) to investigate the effect of topographical cues on regulating behaviors of human mesenchymal stem cells (hMSCs) toward skeletal muscle tissues. This integrated approach serves to fabricate shape-specific, multiple dimensional, anisotropic scaffolds using different biomaterials. 2D anisotropic scaffolds, first demonstrated with different polycaprolactone concentrations herein, efficiently direct hMSC alignment, especially when the scaffold is immobilized on a support ring. By surface coating the polymer solution inside FDM-printed sacrificial structures, 3D anisotropic scaffolds with thin wall features are developed and used to regulate seeded hMSCs through a self-established rotating bioreactor. Using layer-by-layer coating, along with a shape memory polymer, smart constructs exhibiting shape fix and recovery processes are prepared, bringing this study into the realm of 4D printing. Immunofluorescence staining and real-time quantitative polymerase chain reaction analysis confirm that the topographical cues created via FCT significantly enhance the expression of myogenic genes, including myoblast differentiation protein-1, desmin, and myosin heavy chain-2. We conclude that there are broad application potentials for this FCT strategy in tissue engineering as many tissues and organs, including skeletal muscle, possess highly organized and anisotropic extracellular matrix components.
Identifiants
pubmed: 31026857
doi: 10.1088/1758-5090/ab1d07
pmc: PMC6746184
mid: NIHMS1050175
doi:
Types de publication
Journal Article
Research Support, N.I.H., Extramural
Research Support, U.S. Gov't, Non-P.H.S.
Langues
eng
Sous-ensembles de citation
IM
Pagination
035030Subventions
Organisme : NIBIB NIH HHS
ID : DP2 EB020549
Pays : United States
Références
Biomaterials. 2012 Jan;33(2):428-43
pubmed: 22014942
J Mater Chem B. 2018 Feb 28;6(8):1226-1237
pubmed: 32254183
Genes Dev. 2005 Mar 1;19(5):553-69
pubmed: 15706034
Curr Opin Genet Dev. 2005 Oct;15(5):528-35
pubmed: 16055324
J Biosci Bioeng. 2011 Sep;112(3):273-8
pubmed: 21646045
Front Physiol. 2014 Sep 22;5:362
pubmed: 25295011
Biotechnol Adv. 2013 Sep-Oct;31(5):654-68
pubmed: 22902273
J Mater Chem B. 2014 Sep 21;2(35):5898-5909
pubmed: 32262034
Anal Chem. 2014 Apr 1;86(7):3240-53
pubmed: 24432804
Biomaterials. 2008 Feb;29(6):653-61
pubmed: 17983651
Adv Mater. 2016 Jan 6;28(1):132-7
pubmed: 26551393
Tissue Eng Part C Methods. 2016 Oct;22(10):952-963
pubmed: 28195832
Cell Tissue Res. 2012 Mar;347(3):759-74
pubmed: 21667167
Cell Biol Int. 2011 Apr;35(4):397-406
pubmed: 20946104
Biomaterials. 2009 Oct;30(30):5950-8
pubmed: 19674785
Br J Sports Med. 2015 Mar;49(5):306
pubmed: 25394420
J Biomed Mater Res A. 2015 May;103(5):1875-81
pubmed: 25203786
Sci Rep. 2016 Jun 02;6:27226
pubmed: 27251982
Mater Today (Kidlington). 2017 Dec;20(10):577-591
pubmed: 29403328
J Mater Chem B. 2018 Sep 14;6(34):5424-5434
pubmed: 32254601
Front Physiol. 2014 Feb 18;5:37
pubmed: 24600395
PLoS One. 2014 Aug 08;9(8):e104502
pubmed: 25105589
Biotechnol Adv. 2014 Mar-Apr;32(2):347-65
pubmed: 24269848
Biofabrication. 2018 May 02;10(3):035007
pubmed: 29651999
Science. 2015 Apr 24;348(6233):aaa2491
pubmed: 25908826
J Biomed Mater Res A. 2014 Jul;102(7):2197-207
pubmed: 23907895
Biomaterials. 2010 Dec;31(34):9031-9
pubmed: 20797783
Biomaterials. 2002 Feb;23(4):1169-85
pubmed: 11791921
Adv Biosyst. 2018 Sep;2(9):
pubmed: 30906853
Biomaterials. 2013 Oct;34(30):7372-80
pubmed: 23849343
Chem Soc Rev. 2015 Aug 7;44(15):5031-9
pubmed: 25992492
Adv Mater. 2017 Sep;29(33):
pubmed: 28660620
Sci Rep. 2014 Nov 27;4:6973
pubmed: 25427880
Adv Mater. 2016 Dec;28(48):10588-10612
pubmed: 27865007
Biomacromolecules. 2013 Dec 9;14(12):4207-16
pubmed: 24131307
Tissue Eng Part C Methods. 2013 Jul;19(7):538-49
pubmed: 23198964
Biomed Res Int. 2018 Apr 16;2018:1984879
pubmed: 29850487
J Cell Physiol. 2003 Jul;196(1):70-8
pubmed: 12767042
Biomaterials. 2012 Jan;33(2):504-14
pubmed: 22014459
Adv Mater. 2007;19(19):2775-2779
pubmed: 18584057
Adv Mater. 2017 Feb;29(7):
pubmed: 27936286
Artif Organs. 2009 Jan;33(1):26-35
pubmed: 19178438
Biomaterials. 2005 May;26(15):2603-10
pubmed: 15585263
Biotechnol Prog. 2004 May-Jun;20(3):750-5
pubmed: 15176878
Polym Rev (Phila Pa). 2018;58(4):668-687
pubmed: 30911289
Stem Cells. 2004;22(4):617-24
pubmed: 15277707
Acta Biomater. 2014 Nov;10(11):4597-4605
pubmed: 25063999
Braz J Med Biol Res. 2003 Jun;36(6):683-91
pubmed: 12792695
Nanoscale. 2015 Nov 21;7(43):18239-49
pubmed: 26486984
Lab Chip. 2013 Oct 21;13(20):4124-33
pubmed: 23969512
J Mater Chem B. 2018 Sep 21;6(35):5530-5539
pubmed: 32254963
Lab Chip. 2017 Aug 22;17(17):2982-2993
pubmed: 28762415