Gene domain-specific DNA methylation episignatures highlight distinct molecular entities of ADNP syndrome.


Journal

Clinical epigenetics
ISSN: 1868-7083
Titre abrégé: Clin Epigenetics
Pays: Germany
ID NLM: 101516977

Informations de publication

Date de publication:
27 04 2019
Historique:
received: 06 02 2019
accepted: 27 03 2019
entrez: 29 4 2019
pubmed: 29 4 2019
medline: 19 3 2020
Statut: epublish

Résumé

ADNP syndrome is a rare Mendelian disorder characterized by global developmental delay, intellectual disability, and autism. It is caused by truncating mutations in ADNP, which is involved in chromatin regulation. We hypothesized that the disruption of chromatin regulation might result in specific DNA methylation patterns that could be used in the molecular diagnosis of ADNP syndrome. We identified two distinct and partially opposing genomic DNA methylation episignatures in the peripheral blood samples from 22 patients with ADNP syndrome. The "epi-ADNP-1" episignature included ~ 6000 mostly hypomethylated CpGs, and the "epi-ADNP-2" episignature included ~ 1000 predominantly hypermethylated CpGs. The two signatures correlated with the locations of the ADNP mutations. Epi-ADNP-1 mutations occupy the N- and C-terminus, and epi-ADNP-2 mutations are centered on the nuclear localization signal. The episignatures were enriched for genes involved in neuronal system development and function. A classifier trained on these profiles yielded full sensitivity and specificity in detecting patients with either of the two episignatures. Applying this model to seven patients with uncertain clinical diagnosis enabled reclassification of genetic variants of uncertain significance and assigned new diagnosis when the primary clinical suspicion was not correct. When applied to a large cohort of unresolved patients with developmental delay (N = 1150), the model predicted three additional previously undiagnosed patients to have ADNP syndrome. DNA sequencing of these subjects, wherever available, identified pathogenic mutations within the gene domains predicted by the model. We describe the first Mendelian condition with two distinct episignatures caused by mutations in a single gene. These highly sensitive and specific DNA methylation episignatures enable diagnosis, screening, and genetic variant classifications in ADNP syndrome.

Sections du résumé

BACKGROUND
ADNP syndrome is a rare Mendelian disorder characterized by global developmental delay, intellectual disability, and autism. It is caused by truncating mutations in ADNP, which is involved in chromatin regulation. We hypothesized that the disruption of chromatin regulation might result in specific DNA methylation patterns that could be used in the molecular diagnosis of ADNP syndrome.
RESULTS
We identified two distinct and partially opposing genomic DNA methylation episignatures in the peripheral blood samples from 22 patients with ADNP syndrome. The "epi-ADNP-1" episignature included ~ 6000 mostly hypomethylated CpGs, and the "epi-ADNP-2" episignature included ~ 1000 predominantly hypermethylated CpGs. The two signatures correlated with the locations of the ADNP mutations. Epi-ADNP-1 mutations occupy the N- and C-terminus, and epi-ADNP-2 mutations are centered on the nuclear localization signal. The episignatures were enriched for genes involved in neuronal system development and function. A classifier trained on these profiles yielded full sensitivity and specificity in detecting patients with either of the two episignatures. Applying this model to seven patients with uncertain clinical diagnosis enabled reclassification of genetic variants of uncertain significance and assigned new diagnosis when the primary clinical suspicion was not correct. When applied to a large cohort of unresolved patients with developmental delay (N = 1150), the model predicted three additional previously undiagnosed patients to have ADNP syndrome. DNA sequencing of these subjects, wherever available, identified pathogenic mutations within the gene domains predicted by the model.
CONCLUSIONS
We describe the first Mendelian condition with two distinct episignatures caused by mutations in a single gene. These highly sensitive and specific DNA methylation episignatures enable diagnosis, screening, and genetic variant classifications in ADNP syndrome.

Identifiants

pubmed: 31029150
doi: 10.1186/s13148-019-0658-5
pii: 10.1186/s13148-019-0658-5
pmc: PMC6487024
doi:

Substances chimiques

ADNP protein, human 0
Homeodomain Proteins 0
Nerve Tissue Proteins 0

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

64

Subventions

Organisme : NICHD NIH HHS
ID : U54 HD086984
Pays : United States

Références

J Biol Chem. 2001 Jan 5;276(1):708-14
pubmed: 11013255
Sci Rep. 2016 Dec 09;6:38803
pubmed: 27934915
Epigenetics Chromatin. 2015 Jan 27;8:6
pubmed: 25972926
Front Oncol. 2018 Apr 23;8:100
pubmed: 29740534
Cell Cycle. 2018;17(9):1068-1075
pubmed: 29911927
J Mol Neurosci. 2005;25(3):225-38
pubmed: 15800376
Genet Med. 2015 May;17(5):405-24
pubmed: 25741868
Hum Genet. 2015 Mar;134(3):317-332
pubmed: 25563730
Am J Hum Genet. 2019 Apr 4;104(4):685-700
pubmed: 30929737
J Biol Chem. 2012 Nov 16;287(47):39911-24
pubmed: 23035120
Epigenetics. 2017;12(11):923-933
pubmed: 28933623
J Biol Chem. 2007 Nov 23;282(47):34448-56
pubmed: 17878164
BMC Bioinformatics. 2012 May 08;13:86
pubmed: 22568884
Am J Hum Genet. 2018 Jan 4;102(1):156-174
pubmed: 29304373
PLoS One. 2016 Dec 9;11(12):e0166486
pubmed: 27935972
Bioinformatics. 2014 May 15;30(10):1363-9
pubmed: 24478339
Cell Cycle. 2008 Mar 1;7(5):670-82
pubmed: 18382127
Epigenetics. 2012 Nov;7(11):1219-24
pubmed: 23010866
Proc Natl Acad Sci U S A. 2000 May 23;97(11):6049-54
pubmed: 10811911
Nucleic Acids Res. 2003 Jul 1;31(13):3812-4
pubmed: 12824425
Am J Hum Genet. 2017 May 4;100(5):773-788
pubmed: 28475860
Sci Rep. 2017 Nov 16;7(1):15693
pubmed: 29146936
Brain Res Dev Brain Res. 2003 Aug 12;144(1):83-90
pubmed: 12888219
PLoS One. 2013 Jun 27;8(6):e67378
pubmed: 23826282
J Biol Chem. 2013 Mar 29;288(13):9303-12
pubmed: 23420842
Epigenomics. 2019 Apr;11(5):563-575
pubmed: 30875234
Aging (Albany NY). 2015 Feb;7(2):82-96
pubmed: 25701644
PLoS One. 2012;7(7):e41361
pubmed: 22848472
Nat Commun. 2018 Nov 20;9(1):4885
pubmed: 30459321
Nat Rev Genet. 2013 May;14(5):347-59
pubmed: 23568486
Front Neurosci. 2018 Nov 26;12:873
pubmed: 30534048
Oncogene. 2007 Nov 15;26(52):7355-62
pubmed: 17546054
Nucleic Acids Res. 2015 Apr 20;43(7):e47
pubmed: 25605792
Nature. 2016 Aug 17;536(7616):285-91
pubmed: 27535533
Nat Commun. 2018 May 25;9(1):2064
pubmed: 29802345
Clin Epigenetics. 2016 Sep 05;8:91
pubmed: 27602171
Nat Genet. 2017 Apr;49(4):515-526
pubmed: 28191889
Nat Commun. 2016 Nov 08;7:13316
pubmed: 27824329
Nat Methods. 2014 Apr;11(4):361-2
pubmed: 24681721
Eur J Hum Genet. 2017 Dec;25(12):1335-1344
pubmed: 29255178
Bioinformatics. 2016 Jan 15;32(2):286-8
pubmed: 26424855
J Cell Sci. 2000 Dec;113 Pt 24:4511-21
pubmed: 11082044
PLoS One. 2011 Jan 18;6(1):e15894
pubmed: 21267468
J Mol Diagn. 2017 Nov;19(6):848-856
pubmed: 28807811
Nucleic Acids Res. 2009 May;37(9):e67
pubmed: 19339519
Nat Genet. 2014 Apr;46(4):380-4
pubmed: 24531329
Nat Commun. 2016 Nov 25;7:13507
pubmed: 27886173
Hum Mutat. 2015 Oct;36(10):928-30
pubmed: 26220891
Am J Hum Genet. 2015 Aug 6;97(2):216-27
pubmed: 26166478
PLoS One. 2012;7(12):e51458
pubmed: 23272107
Nat Commun. 2018 Jun 19;9(1):2397
pubmed: 29921915
Epigenetics Chromatin. 2017 Mar 10;10:10
pubmed: 28293299
Nat Commun. 2014 Nov 24;5:5595
pubmed: 25418537
Mol Biosyst. 2016 Feb;12(2):477-9
pubmed: 26661513
Neuron. 2015 Dec 2;88(5):910-917
pubmed: 26637798
Bioinformatics. 2014 Aug 15;30(16):2360-6
pubmed: 24794928
Mutat Res. 2016 Feb-Mar;784-785:46-52
pubmed: 26845707
Curr Protoc Hum Genet. 2013 Jan;Chapter 7:Unit7.20
pubmed: 23315928
Mol Biol Cell. 1999 Feb;10(2):501-13
pubmed: 9950691
Clin Epigenetics. 2018 Feb 14;10:21
pubmed: 29456765

Auteurs

Eric G Bend (EG)

Greenwood Genetic Center, 106 Gregor Mendel Cir, Greenwood, SC, 29646, USA.
PreventionGenetics, Marshfield, WI, USA.

Erfan Aref-Eshghi (E)

Department of Pathology and Laboratory Medicine, Western University, 800 Commissioner's Road E, London, ON, N6A 5W9, Canada.
Molecular Genetics Laboratory, Victoria Hospital, London Health Sciences Centre, London, ON, Canada.

David B Everman (DB)

Greenwood Genetic Center, 106 Gregor Mendel Cir, Greenwood, SC, 29646, USA.

R Curtis Rogers (RC)

Greenwood Genetic Center, 106 Gregor Mendel Cir, Greenwood, SC, 29646, USA.

Sara S Cathey (SS)

Greenwood Genetic Center, 106 Gregor Mendel Cir, Greenwood, SC, 29646, USA.

Eloise J Prijoles (EJ)

Greenwood Genetic Center, 106 Gregor Mendel Cir, Greenwood, SC, 29646, USA.

Michael J Lyons (MJ)

Greenwood Genetic Center, 106 Gregor Mendel Cir, Greenwood, SC, 29646, USA.

Heather Davis (H)

Greenwood Genetic Center, 106 Gregor Mendel Cir, Greenwood, SC, 29646, USA.

Katie Clarkson (K)

Greenwood Genetic Center, 106 Gregor Mendel Cir, Greenwood, SC, 29646, USA.

Karen W Gripp (KW)

Al DuPont Hospital for Children, Wilmington, DE, USA.

Dong Li (D)

Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, USA.

Elizabeth Bhoj (E)

Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, USA.

Elaine Zackai (E)

Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA, USA.

Paul Mark (P)

Spectrum Health, Grand Rapids, MI, USA.

Hakon Hakonarson (H)

Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, USA.

Laurie A Demmer (LA)

Levine Children's Hospital, Carolinas Medical Center, Charlotte, NC, USA.

Michael A Levy (MA)

Department of Pathology and Laboratory Medicine, Western University, 800 Commissioner's Road E, London, ON, N6A 5W9, Canada.
Molecular Genetics Laboratory, Victoria Hospital, London Health Sciences Centre, London, ON, Canada.

Jennifer Kerkhof (J)

Department of Pathology and Laboratory Medicine, Western University, 800 Commissioner's Road E, London, ON, N6A 5W9, Canada.
Molecular Genetics Laboratory, Victoria Hospital, London Health Sciences Centre, London, ON, Canada.

Alan Stuart (A)

Department of Pathology and Laboratory Medicine, Western University, 800 Commissioner's Road E, London, ON, N6A 5W9, Canada.
Molecular Genetics Laboratory, Victoria Hospital, London Health Sciences Centre, London, ON, Canada.

David Rodenhiser (D)

Department of Pediatrics, Biochemistry and Oncology, Western University, London, ON, Canada.

Michael J Friez (MJ)

Greenwood Genetic Center, 106 Gregor Mendel Cir, Greenwood, SC, 29646, USA.

Roger E Stevenson (RE)

Greenwood Genetic Center, 106 Gregor Mendel Cir, Greenwood, SC, 29646, USA.

Charles E Schwartz (CE)

Greenwood Genetic Center, 106 Gregor Mendel Cir, Greenwood, SC, 29646, USA. ceschwartz@ggc.org.

Bekim Sadikovic (B)

Department of Pathology and Laboratory Medicine, Western University, 800 Commissioner's Road E, London, ON, N6A 5W9, Canada. bekim.sadikovic@lhsc.on.ca.
Molecular Genetics Laboratory, Victoria Hospital, London Health Sciences Centre, London, ON, Canada. bekim.sadikovic@lhsc.on.ca.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH