Active Fraction from Embryo Fish Extracts Induces Reversion of the Malignant Invasive Phenotype in Breast Cancer through Down-regulation of TCTP and Modulation of E-cadherin/β-catenin Pathway.
Animals
Antineoplastic Agents
/ pharmacology
Apoptosis
/ drug effects
Biomarkers, Tumor
/ metabolism
Breast Neoplasms
/ metabolism
Cadherins
/ metabolism
Cell Line, Tumor
Cell Movement
/ drug effects
Down-Regulation
Embryo, Nonmammalian
/ chemistry
Humans
Phenotype
Tissue Extracts
/ pharmacology
Tumor Protein, Translationally-Controlled 1
Zebrafish
beta Catenin
/ metabolism
E-cadherin/β-catenin
Embryo fish extract
TCTP
Tumor Reversion
cytoskeleton
p53
Journal
International journal of molecular sciences
ISSN: 1422-0067
Titre abrégé: Int J Mol Sci
Pays: Switzerland
ID NLM: 101092791
Informations de publication
Date de publication:
30 Apr 2019
30 Apr 2019
Historique:
received:
12
03
2019
revised:
15
04
2019
accepted:
29
04
2019
entrez:
5
5
2019
pubmed:
6
5
2019
medline:
14
8
2019
Statut:
epublish
Résumé
Some yet unidentified factors released by both oocyte and embryonic microenvironments demonstrated to be non-permissive for tumor development and display the remarkable ability to foster cell/tissue reprogramming, thus ultimately reversing the malignant phenotype. In the present study we observed how molecular factors extracted from Zebrafish embryos during specific developmental phases (20 somites) significantly antagonize proliferation of breast cancer cells, while reversing a number of prominent aspects of malignancy. Embryo extracts reduce cell proliferation, enhance apoptosis, and dramatically inhibit both invasiveness and migrating capabilities of cancer cells. Counteracting the invasive phenotype is a relevant issue in controlling tumor spreading and metastasis. Moreover, such effect is not limited to cancerous cells as embryo extracts were also effective in inhibiting migration and invasiveness displayed by normal breast cells undergoing epithelial-mesenchymal transition upon TGF-β1 stimulation. The reversion program involves the modulation of E-cadherin/β-catenin pathway, cytoskeleton remodeling with dramatic reduction in vinculin, as well as downregulation of TCTP and the concomitant increase in p53 levels. Our findings highlight that-contrary to the prevailing current "dogma", which posits that neoplastic cells are irreversibly "committed"-the malignant phenotype can ultimately be "reversed", at least partially, in response to environmental morphogenetic influences.
Identifiants
pubmed: 31052313
pii: ijms20092151
doi: 10.3390/ijms20092151
pmc: PMC6539734
pii:
doi:
Substances chimiques
Antineoplastic Agents
0
Biomarkers, Tumor
0
Cadherins
0
TPT1 protein, human
0
Tissue Extracts
0
Tumor Protein, Translationally-Controlled 1
0
beta Catenin
0
Types de publication
Journal Article
Langues
eng
Déclaration de conflit d'intérêts
The authors declare they have not conflict of interest. The authors confirm that the funders had no influence over the study design, content of the article, or selection of this journal.
Références
Mol Carcinog. 2000 Mar;27(3):151-7
pubmed: 10708476
Cell Prolif. 2009 Dec;42(6):788-98
pubmed: 19732065
Trends Genet. 2017 Dec;33(12):943-959
pubmed: 28919019
Nat Rev Cancer. 2007 Apr;7(4):246-55
pubmed: 17384580
Sci Rep. 2016 Feb 24;6:21903
pubmed: 26906973
Nature. 2009 Aug 27;460(7259):1085-6
pubmed: 19713919
Integr Biol (Camb). 2013 Aug;5(8):1045-56
pubmed: 23817524
Front Oncol. 2017 Aug 28;7:186
pubmed: 28894696
PLoS One. 2013 Oct 01;8(10):e76192
pubmed: 24098438
J Cell Sci. 1999 Apr;112 ( Pt 8):1237-45
pubmed: 10085258
Nat Med. 2011 Dec 11;18(1):91-9
pubmed: 22157679
BMC Cancer. 2010 Jun 07;10:263
pubmed: 20529269
Cancer Cell. 2006 Jan;9(1):33-44
pubmed: 16413470
Oncol Res. 2005;15(7-8):399-408
pubmed: 16491958
PLoS One. 2013 Dec 30;8(12):e83770
pubmed: 24386275
Biochem Pharmacol. 2012 Mar 1;83(5):616-26
pubmed: 22192821
Science. 1973 Sep 14;181(4104):1057-8
pubmed: 4269415
Cancer Res. 2003 May 1;63(9):2172-8
pubmed: 12727836
Curr Pharm Biotechnol. 2011 Feb 1;12(2):243-53
pubmed: 21044001
Dev Dyn. 2013 Sep;242(9):1078-93
pubmed: 23780720
Mol Cancer. 2011 Jan 13;10(1):7
pubmed: 21232089
Int J Androl. 2008 Apr;31(2):288-93
pubmed: 17971158
Nature. 2009 Aug 27;460(7259):1140-4
pubmed: 19668186
Curr Pharm Biotechnol. 2011 Feb 1;12(2):261-7
pubmed: 21043999
Curr Pharm Biotechnol. 2015;16(9):782-92
pubmed: 26201607
Differentiation. 2005 Dec;73(9-10):484-90
pubmed: 16351692
Development. 2004 Feb;131(4):703-12
pubmed: 14757636
Biol Reprod. 2013 Nov 21;89(5):122
pubmed: 23946538
Nat Mater. 2013 Dec;12(12):1154-62
pubmed: 24141451
FEBS Lett. 2011 Jan 3;585(1):29-35
pubmed: 21081126
Curr Biol. 2004 Aug 24;14(16):1475-80
pubmed: 15324664
J Proteome Res. 2011 May 6;10(5):2140-53
pubmed: 21344949
EMBO J. 2002 Nov 15;21(22):6236-45
pubmed: 12426395
Methods Mol Biol. 2018;1702:95-123
pubmed: 29119504
Eur J Cell Biol. 2006 Jun;85(6):487-500
pubmed: 16584805
Proc Natl Acad Sci U S A. 1975 Sep;72(9):3585-9
pubmed: 1059147
Apoptosis. 2006 Sep;11(9):1617-28
pubmed: 16820966
J Biol Chem. 2010 Apr 23;285(17):13121-30
pubmed: 20181946
Cell Commun Adhes. 2005 Jan-Apr;12(1-2):9-22
pubmed: 16371343
Proc Natl Acad Sci U S A. 2000 Jan 4;97(1):32-7
pubmed: 10618366
Curr Stem Cell Res Ther. 2010 Mar;5(1):2-12
pubmed: 19951253
Curr Opin Oncol. 2013 Jan;25(1):59-65
pubmed: 23165143
Front Physiol. 2019 Jul 26;10:924
pubmed: 31427981
Proc Natl Acad Sci U S A. 2002 Nov 12;99(23):14976-81
pubmed: 12399545
Semin Cancer Biol. 2010 Apr;20(2):98-106
pubmed: 20188173