Single-Molecule DNA Fiber Analyses to Characterize Replication Fork Dynamics in Living Cells.
Cell Cycle Proteins
/ metabolism
DEAD-box RNA Helicases
/ metabolism
DNA Damage
/ drug effects
DNA Helicases
/ metabolism
DNA Replication
/ drug effects
DNA, Single-Stranded
/ metabolism
Deoxyuridine
/ analogs & derivatives
HeLa Cells
Humans
Idoxuridine
/ analogs & derivatives
Intracellular Signaling Peptides and Proteins
/ metabolism
RecQ Helicases
/ metabolism
Replication Protein A
/ metabolism
Single Molecule Imaging
/ methods
DNA fiber
DNA synthesis
Genomic instability
Replication
Journal
Methods in molecular biology (Clifton, N.J.)
ISSN: 1940-6029
Titre abrégé: Methods Mol Biol
Pays: United States
ID NLM: 9214969
Informations de publication
Date de publication:
2019
2019
Historique:
entrez:
26
5
2019
pubmed:
28
5
2019
medline:
3
3
2020
Statut:
ppublish
Résumé
Understanding the molecular dynamics of DNA replication in vivo has been a formidable challenge requiring the development of advanced technologies. Over the past 50 years or so, studies involving DNA autoradiography in bacterial cells have led to sophisticated DNA tract analyses in human cells to characterize replication dynamics at the single-molecule level. Our own lab has used DNA fiber analysis to characterize replication in helicase-deficient human cells. This work led us to propose a model in which the human DNA helicase RECQ1 acts as a governor of the single-stranded DNA binding protein RPA and regulates its bioavailability for DNA synthesis. We have also used the DNA fiber approach to investigate the interactive role of DDX11 helicase with a replication fork protection protein (Timeless) in human cells when they are under pharmacologically induced stress. In this methods chapter, we present a step-by-step protocol for the single-molecule DNA fiber assay. We describe experimental designs to study replication stress and staining patterns from pulse-chase labeling experiments to address the dynamics of replication forks in stressed cells.
Identifiants
pubmed: 31127587
doi: 10.1007/978-1-4939-9500-4_21
pmc: PMC9123882
mid: NIHMS1800707
doi:
Substances chimiques
Cell Cycle Proteins
0
DNA, Single-Stranded
0
Intracellular Signaling Peptides and Proteins
0
RPA1 protein, human
0
Replication Protein A
0
TIMELESS protein, human
0
5'-deoxy-5'-iodouridine
14259-58-6
5-chloro-2'-deoxyuridine
50-90-8
RECQL protein, human
EC 3.6.1.-
DNA Helicases
EC 3.6.4.-
RecQ Helicases
EC 3.6.4.12
DDX11 protein, human
EC 3.6.4.13
DEAD-box RNA Helicases
EC 3.6.4.13
Idoxuridine
LGP81V5245
Deoxyuridine
W78I7AY22C
Types de publication
Journal Article
Research Support, N.I.H., Extramural
Langues
eng
Sous-ensembles de citation
IM
Pagination
307-318Subventions
Organisme : Intramural NIH HHS
ID : Z01 AG000741
Pays : United States
Références
Nat Rev Mol Cell Biol. 2016 Jul;17(7):399-412
pubmed: 27075410
Methods Enzymol. 2017;591:55-82
pubmed: 28645379
EMBO Rep. 2017 Nov;18(11):2030-2050
pubmed: 28887320
J Biol Chem. 2004 May 7;279(19):20067-75
pubmed: 14982920
Curr Biol. 2015 Nov 2;25(21):2830-2838
pubmed: 26455304
J Mol Biol. 1963 Mar;6:208-13
pubmed: 14017761
J Mol Biol. 1968 Mar 14;32(2):327-41
pubmed: 5689363
Nucleic Acids Res. 2010 Nov;38(20):6906-19
pubmed: 20571081
J Cell Biol. 1998 Mar 23;140(6):1285-95
pubmed: 9508763
Science. 1994 Sep 30;265(5181):2096-8
pubmed: 7522347
Nat Genet. 1993 Sep;5(1):17-21
pubmed: 8106079
Am J Hum Genet. 2010 Feb 12;86(2):262-6
pubmed: 20137776
Hum Mutat. 2013 Jan;34(1):103-7
pubmed: 23033317
Nucleic Acids Res. 2016 Jan 29;44(2):705-17
pubmed: 26503245
J Clin Invest. 2017 May 1;127(5):1839-1855
pubmed: 28394262
Nat Rev Cancer. 2013 Aug;13(8):542-58
pubmed: 23842644