New steps in mucilage biosynthesis revealed by analysis of the transcriptome of the UDP-rhamnose/UDP-galactose transporter 2 mutant.


Journal

Journal of experimental botany
ISSN: 1460-2431
Titre abrégé: J Exp Bot
Pays: England
ID NLM: 9882906

Informations de publication

Date de publication:
15 10 2019
Historique:
received: 02 04 2019
accepted: 05 05 2019
pubmed: 31 5 2019
medline: 11 8 2020
entrez: 31 5 2019
Statut: ppublish

Résumé

Upon imbibition, epidermal cells of Arabidopsis thaliana seeds release a mucilage formed mostly by pectic polysaccharides. The Arabidopsis mucilage is composed mainly of unbranched rhamnogalacturonan-I (RG-I), with low amounts of cellulose, homogalacturonan, and traces of xylan, xyloglucan, galactoglucomannan, and galactan. The pectin-rich composition of the mucilage and their simple extractability makes this structure a good candidate to study the biosynthesis of pectic polysaccharides and their modification. Here, we characterize the mucilage phenotype of a mutant in the UDP-rhamnose/galactose transporter 2 (URGT2), which exhibits a reduction in RG-I and also shows pleiotropic changes, suggesting the existence of compensation mechanisms triggered by the lack of URGT2. To gain an insight into the possible compensation mechanisms activated in the mutant, we performed a transcriptome analysis of developing seeds using RNA sequencing (RNA-seq). The results showed a significant misregulation of 3149 genes, 37 of them (out of the 75 genes described to date) encoding genes proposed to be involved in mucilage biosynthesis and/or its modification. The changes observed in urgt2 included the up-regulation of UAFT2, a UDP-arabinofuranose transporter, and UUAT3, a paralog of the UDP-uronic acid transporter UUAT1, suggesting that they play a role in mucilage biosynthesis. Mutants in both genes showed changes in mucilage composition and structure, confirming their participation in mucilage biosynthesis. Our results suggest that plants lacking a UDP-rhamnose/galactose transporter undergo important changes in gene expression, probably to compensate modifications in the plant cell wall due to the lack of a gene involved in its biosynthesis.

Identifiants

pubmed: 31145803
pii: 5506718
doi: 10.1093/jxb/erz262
pmc: PMC6793455
doi:

Substances chimiques

AT1G21070 protein, Arabidopsis 0
Arabidopsis Proteins 0
Monosaccharide Transport Proteins 0
Plant Mucilage 0

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

5071-5088

Informations de copyright

© The Author(s) 2019. Published by Oxford University Press on behalf of the Society for Experimental Biology.

Références

J Exp Bot. 2009;60(3):955-65
pubmed: 19269997
Plant J. 2007 Jun;50(5):810-24
pubmed: 17470058
J Exp Bot. 2016 Apr;67(8):2177-90
pubmed: 26895630
Curr Opin Plant Biol. 2004 Jun;7(3):285-95
pubmed: 15134749
Bioinformatics. 2015 Jan 15;31(2):166-9
pubmed: 25260700
Plant J. 2000 Jun;22(6):483-93
pubmed: 10886768
Plant Physiol. 2018 Nov;178(3):1045-1064
pubmed: 30228108
Nature. 2000 Dec 14;408(6814):796-815
pubmed: 11130711
Proc Natl Acad Sci U S A. 2017 Apr 18;114(16):4261-4266
pubmed: 28373556
Dev Cell. 2010 Nov 16;19(5):765-77
pubmed: 21074725
J Biol Chem. 2002 Sep 6;277(36):32923-9
pubmed: 12042319
Mol Plant. 2012 Nov;5(6):1263-80
pubmed: 22933714
Mol Plant. 2016 Aug 1;9(8):1119-1131
pubmed: 27179920
Plant Cell Physiol. 2015 Feb;56(2):215-23
pubmed: 25416836
Curr Biol. 2017 Sep 11;27(17):R865-R870
pubmed: 28898654
Plant Physiol. 2018 Apr;176(4):2737-2749
pubmed: 29440562
Curr Opin Plant Biol. 2004 Jun;7(3):277-84
pubmed: 15134748
Nature. 2015 Jan 29;517(7536):571-5
pubmed: 25533953
Plant Physiol. 2013 Nov;163(3):1203-17
pubmed: 24092888
Plant Physiol. 2003 Mar;131(3):1178-90
pubmed: 12644669
Glycobiology. 2016 Sep;26(9):913-925
pubmed: 27507902
Plant Physiol. 2009 Jul;150(3):1219-34
pubmed: 19458117
Physiol Plant. 2018 Sep;164(1):82-94
pubmed: 29652097
Plant Cell. 2002 Jun;14(6):1359-75
pubmed: 12084832
J Integr Plant Biol. 2011 May;53(5):399-408
pubmed: 21362134
Plant Cell. 2007 Dec;19(12):3990-4006
pubmed: 18165330
Planta. 2010 May;231(6):1373-83
pubmed: 20309579
Plant Cell. 2008 Jun;20(6):1623-38
pubmed: 18523060
PLoS One. 2013 Nov 06;8(11):e77885
pubmed: 24223126
Mol Plant. 2018 Jan 8;11(1):31-46
pubmed: 28859907
Nat Plants. 2018 Sep;4(9):669-676
pubmed: 30082766
Plant Cell Physiol. 2015 Feb;56(2):224-31
pubmed: 25481004
Glycobiology. 2005 Feb;15(2):193-201
pubmed: 15456736
Front Plant Sci. 2018 Mar 27;9:384
pubmed: 29636762
Trends Plant Sci. 2015 Aug;20(8):515-24
pubmed: 25998090
Plant Signal Behav. 2010 Jul;5(7):796-801
pubmed: 20505351
Plant Cell Physiol. 2013 Aug;54(8):1278-88
pubmed: 23695504
Plant Sci. 2018 Jul;272:179-192
pubmed: 29807590
Science. 2014 Jan 24;343(6169):408-11
pubmed: 24458638
PLoS One. 2016 Oct 24;11(10):e0165075
pubmed: 27776173
Plant Cell. 2017 Jan;29(1):129-143
pubmed: 28062750
FEBS Lett. 2006 Jul 24;580(17):4246-51
pubmed: 16831428
Plant Cell. 2016 Oct;28(10):2478-2492
pubmed: 27624758
Curr Opin Plant Biol. 2008 Jun;11(3):244-51
pubmed: 18485801
Science. 2003 Aug 1;301(5633):653-7
pubmed: 12893945
Plant Cell. 2015 Apr;27(4):1218-27
pubmed: 25804536
Mol Plant. 2011 Nov;4(6):1074-91
pubmed: 21653281
Curr Opin Cell Biol. 2017 Feb;44:28-35
pubmed: 28131101
Plant J. 2015 Apr;82(2):208-20
pubmed: 25704846
Planta. 2005 Aug;221(6):747-51
pubmed: 15981004
New Phytol. 2017 May;214(3):959-966
pubmed: 28191645
J Exp Bot. 2016 Mar;67(5):1243-57
pubmed: 26834178
Annu Rev Plant Biol. 2012;63:381-407
pubmed: 22224451
Plant Physiol. 2017 Feb;173(2):1059-1074
pubmed: 28003327
J Exp Bot. 2015 Jul;66(14):4145-63
pubmed: 25873661
Plant J. 2011 Feb;65(4):634-46
pubmed: 21214652
Plant J. 2018 Feb;93(4):614-636
pubmed: 29266460
Front Plant Sci. 2017 Jan 26;8:66
pubmed: 28184232
Plant Physiol. 2017 Sep;175(1):259-271
pubmed: 28743764
Planta. 2005 Oct;222(3):521-9
pubmed: 15891899
Plant Physiol. 2015 Dec;169(4):2481-95
pubmed: 26482889
Bioinformatics. 2010 Jan 1;26(1):139-40
pubmed: 19910308
Plant Physiol. 2011 Jun;156(2):491-502
pubmed: 21518777
Int J Mol Sci. 2015 Feb 04;16(2):3452-73
pubmed: 25658798
Nat Commun. 2016 Jul 06;7:12119
pubmed: 27381418
Plant Cell. 2013 Jan;25(1):308-23
pubmed: 23362209
Planta. 2015 Oct;242(4):791-811
pubmed: 26168980
New Phytol. 2011 Oct;192(1):114-126
pubmed: 21692803
Plant Cell Physiol. 2010 Oct;51(10):1694-706
pubmed: 20798276
Plant Sci. 2017 May;258:156-169
pubmed: 28330559
Phytochemistry. 2015 Apr;112:100-9
pubmed: 25446233
Plant J. 2011 Dec;68(6):941-53
pubmed: 21883548
Bioinformatics. 2013 Jan 1;29(1):15-21
pubmed: 23104886
Plant Cell. 2000 May;12(5):691-706
pubmed: 10810144
Biochem J. 2017 Feb 15;474(4):471-492
pubmed: 28159895
J Biosci Bioeng. 2007 Jul;104(1):34-41
pubmed: 17697981
Plant J. 2017 Nov;92(4):525-545
pubmed: 28845535
Glycobiology. 2016 Sep;26(9):950-960
pubmed: 26945038
Plant J. 2010 Mar;61(6):1107-21
pubmed: 20409281
Plant Cell. 2001 Oct;13(10):2283-95
pubmed: 11595802
Funct Plant Biol. 2009 May;36(5):383-394
pubmed: 32688655
Front Plant Sci. 2016 Jun 29;7:1073
pubmed: 27524986
J Exp Bot. 2017 Feb 1;68(5):1083-1095
pubmed: 28375469
Proc Natl Acad Sci U S A. 2014 Aug 5;111(31):11563-8
pubmed: 25053812
J Mol Biol. 2016 Aug 14;428(16):3150-3165
pubmed: 27261257
FEBS Lett. 2008 Sep 22;582(21-22):3217-22
pubmed: 18755189
Bioinformatics. 2009 Aug 15;25(16):2078-9
pubmed: 19505943
Plant Physiol. 2014 May 7;165(3):991-1004
pubmed: 24808103
Plant Physiol. 2000 Feb;122(2):345-56
pubmed: 10677428
Plant Physiol. 2000 Mar;122(3):867-77
pubmed: 10712551
Plant Cell Physiol. 2018 Nov 1;59(11):2331-2338
pubmed: 30099531
Proc Natl Acad Sci U S A. 2014 Oct 21;111(42):15261-6
pubmed: 25288746
Plant J. 2008 May;54(3):466-80
pubmed: 18266922
Annu Rev Plant Biol. 2011;62:127-55
pubmed: 21370975
Sci Rep. 2017 Jan 16;7:40672
pubmed: 28091592
Plant Physiol. 2016 May;171(1):165-78
pubmed: 26979331
Plant Physiol. 2001 Sep;127(1):360-71
pubmed: 11553763
Mol Genet Genomics. 2004 Nov;272(4):397-410
pubmed: 15480787
Nucleic Acids Res. 2010 Jul;38(Web Server issue):W64-70
pubmed: 20435677
Plant Physiol. 2015 Sep;169(1):403-20
pubmed: 26220953
Plant Cell. 2013 Mar;25(3):944-59
pubmed: 23482858
Phytochemistry. 2001 Jul;57(6):929-67
pubmed: 11423142
Plant Physiol. 2004 Jan;134(1):296-306
pubmed: 14701918

Auteurs

Juan Pablo Parra-Rojas (JP)

Centro de Biotecnología Vegetal, FONDAP Center for Genome Regulation, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile.

Asier Largo-Gosens (A)

Centro de Biotecnología Vegetal, FONDAP Center for Genome Regulation, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile.

Tomás Carrasco (T)

Centro de Biotecnología Vegetal, FONDAP Center for Genome Regulation, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile.

Jonathan Celiz-Balboa (J)

Centro de Biotecnología Vegetal, FONDAP Center for Genome Regulation, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile.

Verónica Arenas-Morales (V)

Centro de Biotecnología Vegetal, FONDAP Center for Genome Regulation, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile.

Pablo Sepúlveda-Orellana (P)

Centro de Biotecnología Vegetal, FONDAP Center for Genome Regulation, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile.

Henry Temple (H)

Centro de Biotecnología Vegetal, FONDAP Center for Genome Regulation, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile.

Dayan Sanhueza (D)

Centro de Biotecnología Vegetal, FONDAP Center for Genome Regulation, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile.

Francisca C Reyes (FC)

Centro de Biotecnología Vegetal, FONDAP Center for Genome Regulation, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile.

Claudio Meneses (C)

Centro de Biotecnología Vegetal, FONDAP Center for Genome Regulation, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile.

Susana Saez-Aguayo (S)

Centro de Biotecnología Vegetal, FONDAP Center for Genome Regulation, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile.

Ariel Orellana (A)

Centro de Biotecnología Vegetal, FONDAP Center for Genome Regulation, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile.

Articles similaires

T-Lymphocytes, Regulatory Lung Neoplasms Proto-Oncogene Proteins p21(ras) Animals Humans

Pathogenic mitochondrial DNA mutations inhibit melanoma metastasis.

Spencer D Shelton, Sara House, Luiza Martins Nascentes Melo et al.
1.00
DNA, Mitochondrial Humans Melanoma Mutation Neoplasm Metastasis

Prevalence and implications of fragile X premutation screening in Thailand.

Areerat Hnoonual, Sunita Kaewfai, Chanin Limwongse et al.
1.00
Humans Fragile X Mental Retardation Protein Thailand Male Female
Humans Receptors, Antigen, T-Cell Proto-Oncogene Proteins p21(ras) Pancreatic Neoplasms T-Lymphocytes

Classifications MeSH