Neuropathy-related mutations alter the membrane binding properties of the human myelin protein P0 cytoplasmic tail.
Journal
PloS one
ISSN: 1932-6203
Titre abrégé: PLoS One
Pays: United States
ID NLM: 101285081
Informations de publication
Date de publication:
2019
2019
Historique:
received:
08
03
2019
accepted:
29
04
2019
entrez:
8
6
2019
pubmed:
8
6
2019
medline:
6
2
2020
Statut:
epublish
Résumé
Schwann cells myelinate selected axons in the peripheral nervous system (PNS) and contribute to fast saltatory conduction via the formation of compact myelin, in which water is excluded from between tightly adhered lipid bilayers. Peripheral neuropathies, such as Charcot-Marie-Tooth disease (CMT) and Dejerine-Sottas syndrome (DSS), are incurable demyelinating conditions that result in pain, decrease in muscle mass, and functional impairment. Many Schwann cell proteins, which are directly involved in the stability of compact myelin or its development, are subject to mutations linked to these neuropathies. The most abundant PNS myelin protein is protein zero (P0); point mutations in this transmembrane protein cause CMT subtype 1B and DSS. P0 tethers apposing lipid bilayers together through its extracellular immunoglobulin-like domain. Additionally, P0 contains a cytoplasmic tail (P0ct), which is membrane-associated and contributes to the physical properties of the lipid membrane. Six CMT- and DSS-associated missense mutations have been reported in P0ct. We generated recombinant disease mutant variants of P0ct and characterized them using biophysical methods. Compared to wild-type P0ct, some mutants have negligible differences in function and folding, while others highlight functionally important amino acids within P0ct. For example, the D224Y variant of P0ct induced tight membrane multilayer stacking. Our results show a putative molecular basis for the hypermyelinating phenotype observed in patients with this particular mutation and provide overall information on the effects of disease-linked mutations in a flexible, membrane-binding protein segment. Using neutron reflectometry, we additionally show that P0ct embeds deep into a lipid bilayer, explaining the observed effects of P0ct on the physical properties of the membrane.
Identifiants
pubmed: 31173589
doi: 10.1371/journal.pone.0216833
pii: PONE-D-19-06831
pmc: PMC6555526
doi:
Substances chimiques
Lipid Bilayers
0
Myelin P0 Protein
0
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
e0216833Déclaration de conflit d'intérêts
The authors have declared that no competing interests exist.
Références
J Neurosci. 2006 Feb 22;26(8):2358-68
pubmed: 16495463
Sci Rep. 2017 Jul 26;7(1):6510
pubmed: 28747762
J Neurochem. 1985 Sep;45(3):844-52
pubmed: 2411857
Hum Mutat. 2004 Aug;24(2):185-6
pubmed: 15241803
Biochemistry. 2017 Feb 28;56(8):1163-1174
pubmed: 28156093
Eur J Hum Genet. 2009 Sep;17(9):1129-34
pubmed: 19293842
Brain. 2004 Feb;127(Pt 2):371-84
pubmed: 14711881
Biochem Biophys Res Commun. 2019 Mar 26;511(1):7-12
pubmed: 30755303
Sci Rep. 2017 Jul 10;7(1):4974
pubmed: 28694532
Ann Neurol. 2012 Jan;71(1):84-92
pubmed: 22275255
Ann Clin Transl Neurol. 2018 Mar 10;5(4):445-455
pubmed: 29687021
J Cell Biol. 2001 Oct 29;155(3):439-46
pubmed: 11673479
J Cell Biol. 2000 Mar 6;148(5):1021-34
pubmed: 10704451
Glia. 2014 Sep;62(9):1502-12
pubmed: 24849898
J Neurol. 2001 Sep;248(9):795-803
pubmed: 11596785
Front Neurosci. 2018 Jul 11;12:467
pubmed: 30050403
Nucleic Acids Res. 2018 Jul 2;46(W1):W329-W337
pubmed: 29860432
Protein Sci. 2018 Sep;27(9):1717-1722
pubmed: 30168221
Rev Neurol (Paris). 2016 Dec;172(12):767-769
pubmed: 27838091
J Appl Crystallogr. 2015 Mar 12;48(Pt 2):431-443
pubmed: 25844078
PLoS One. 2011;6(5):e19915
pubmed: 21647440
Langmuir. 2005 Mar 29;21(7):2827-37
pubmed: 15779955
J Appl Crystallogr. 2017 Jun 26;50(Pt 4):1212-1225
pubmed: 28808438
Proc Natl Acad Sci U S A. 1993 Nov 15;90(22):10856-60
pubmed: 7504284
Neuron. 1996 Sep;17(3):435-49
pubmed: 8816707
Biophys J. 2007 Mar 1;92(5):1585-97
pubmed: 17142269
Biochem J. 2015 Nov 15;472(1):17-32
pubmed: 26518750
Cell. 1985 Mar;40(3):501-8
pubmed: 2578885
Eur J Med Genet. 2013 Oct;56(10):566-9
pubmed: 23811036
Biointerphases. 2015 Mar 16;10(1):019014
pubmed: 25779088
J Cell Biol. 1994 Aug;126(4):1089-97
pubmed: 7519618
Neuron Glia Biol. 2008 May;4(2):153-63
pubmed: 19737435
Neurochem Res. 2002 Nov;27(11):1331-40
pubmed: 12512938
Biochim Biophys Acta. 2016 Apr;1858(4):640-52
pubmed: 26706098
Biochem Biophys Res Commun. 2017 Aug 26;490(3):806-812
pubmed: 28647360
Mol Cell Neurosci. 1997;8(5):336-50
pubmed: 9073396
Biophys J. 1998 Aug;75(2):734-44
pubmed: 9675175
J Neurol. 2010 Oct;257(10):1661-8
pubmed: 20461396
Rare Dis. 2013 Feb 20;1:e24049
pubmed: 25002989
Sci Rep. 2019 Jan 24;9(1):642
pubmed: 30679613
J Neurochem. 1973 Apr;20(4):1207-16
pubmed: 4697881
J Comput Chem. 2010 Mar;31(4):726-38
pubmed: 19569182
Neuromuscul Disord. 2006 Mar;16(3):183-7
pubmed: 16488608
Nucleic Acids Res. 2015 Jul 1;43(W1):W389-94
pubmed: 25883141
Glia. 2006 Aug 1;54(2):135-45
pubmed: 16788992
J Neurosci. 2011 Nov 9;31(45):16369-86
pubmed: 22072688
Ann N Y Acad Sci. 1999 Sep 14;883:294-301
pubmed: 10586254
Nature. 1990 Apr 26;344(6269):871-2
pubmed: 1691824
Anal Biochem. 2005 Aug 15;343(2):313-21
pubmed: 15993367
Biochemistry. 2010 Apr 27;49(16):3456-63
pubmed: 20334434
Adv Exp Med Biol. 2016;915:261-82
pubmed: 27193548
Acta Crystallogr D Biol Crystallogr. 2014 Jan;70(Pt 1):165-76
pubmed: 24419389
Prog Biophys Mol Biol. 1972;24:107-23
pubmed: 4566650
Neuromuscul Disord. 2002 Oct;12(7-8):643-50
pubmed: 12207932
Eur J Hum Genet. 2009 Sep;17(9):1154-9
pubmed: 19259128
Muscle Nerve. 2010 Apr;41(4):550-4
pubmed: 19882637
Nat Genet. 1995 Nov;11(3):281-6
pubmed: 7581451
J Comput Chem. 2015 May 15;36(13):996-1007
pubmed: 25824339
PLoS Biol. 2013;11(6):e1001577
pubmed: 23762018