Lignocellulose degradation in isopods: new insights into the adaptation to terrestrial life.


Journal

BMC genomics
ISSN: 1471-2164
Titre abrégé: BMC Genomics
Pays: England
ID NLM: 100965258

Informations de publication

Date de publication:
07 Jun 2019
Historique:
received: 11 03 2019
accepted: 23 05 2019
entrez: 9 6 2019
pubmed: 9 6 2019
medline: 5 3 2020
Statut: epublish

Résumé

Isopods constitute a particular group of crustaceans that has successfully colonized all environments including marine, freshwater and terrestrial habitats. Their ability to use various food sources, especially plant biomass, might be one of the reasons of their successful spread. All isopods, which feed on plants and their by-products, must be capable of lignocellulose degradation. This complex composite is the main component of plants and is therefore an important nutrient source for many living organisms. Its degradation requires a large repertoire of highly specialized Carbohydrate-Active enZymes (called CAZymes) which are produced by the organism itself and in some cases, by its associated microbiota. The acquisition of highly diversified CAZymes could have helped isopods to adapt to their diet and to their environment, especially during land colonization. To test this hypothesis, isopod host CAZomes (i.e. the entire CAZyme repertoire) were characterized in marine, freshwater and terrestrial species through a transcriptomic approach. Many CAZymes were identified in 64 isopod transcriptomes, comprising 27 de novo datasets. Our results show that marine, freshwater and terrestrial isopods exhibit different CAZomes, illustrating different strategies for lignocellulose degradation. The analysis of variations of the size of CAZy families shows these are expanded in terrestrial isopods while they are contracted in aquatic isopods; this pattern is probably resulting from the evolution of the host CAZomes during the terrestrial adaptation of isopods. We show that CAZyme gene duplications and horizontal transfers can be involved in adaptive divergence between isopod CAZomes. Our characterization of the CAZomes in 64 isopods species provides new insights into the evolutionary processes that enabled isopods to conquer various environments, especially terrestrial ones.

Sections du résumé

BACKGROUND BACKGROUND
Isopods constitute a particular group of crustaceans that has successfully colonized all environments including marine, freshwater and terrestrial habitats. Their ability to use various food sources, especially plant biomass, might be one of the reasons of their successful spread. All isopods, which feed on plants and their by-products, must be capable of lignocellulose degradation. This complex composite is the main component of plants and is therefore an important nutrient source for many living organisms. Its degradation requires a large repertoire of highly specialized Carbohydrate-Active enZymes (called CAZymes) which are produced by the organism itself and in some cases, by its associated microbiota. The acquisition of highly diversified CAZymes could have helped isopods to adapt to their diet and to their environment, especially during land colonization.
RESULTS RESULTS
To test this hypothesis, isopod host CAZomes (i.e. the entire CAZyme repertoire) were characterized in marine, freshwater and terrestrial species through a transcriptomic approach. Many CAZymes were identified in 64 isopod transcriptomes, comprising 27 de novo datasets. Our results show that marine, freshwater and terrestrial isopods exhibit different CAZomes, illustrating different strategies for lignocellulose degradation. The analysis of variations of the size of CAZy families shows these are expanded in terrestrial isopods while they are contracted in aquatic isopods; this pattern is probably resulting from the evolution of the host CAZomes during the terrestrial adaptation of isopods. We show that CAZyme gene duplications and horizontal transfers can be involved in adaptive divergence between isopod CAZomes.
CONCLUSIONS CONCLUSIONS
Our characterization of the CAZomes in 64 isopods species provides new insights into the evolutionary processes that enabled isopods to conquer various environments, especially terrestrial ones.

Identifiants

pubmed: 31174468
doi: 10.1186/s12864-019-5825-8
pii: 10.1186/s12864-019-5825-8
pmc: PMC6555040
doi:

Substances chimiques

lignocellulose 11132-73-3
Lignin 9005-53-2

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

462

Références

Biol Bull. 1975 Oct;149(2):348-64
pubmed: 1203332
Biol Rev Camb Philos Soc. 2002 Nov;77(4):455-93
pubmed: 12475050
Proc Biol Sci. 2003 Aug 7;270 Suppl 1:S69-72
pubmed: 12952640
Nucleic Acids Res. 2004 Mar 19;32(5):1792-7
pubmed: 15034147
Folia Microbiol (Praha). 2004;49(2):179-82
pubmed: 15227793
FEBS Lett. 2004 Aug 13;572(1-3):201-5
pubmed: 15304348
Mol Biol Evol. 2005 May;22(5):1273-84
pubmed: 15703240
Mol Biol Evol. 2005 May;22(5):1208-22
pubmed: 15703242
Bioinformatics. 2006 May 15;22(10):1269-71
pubmed: 16543274
Bioinformatics. 2006 Jul 1;22(13):1658-9
pubmed: 16731699
Science. 2007 Feb 9;315(5813):804-7
pubmed: 17289988
BMC Evol Biol. 2007 May 11;7:75
pubmed: 17498303
FEMS Microbiol Ecol. 2007 Jul;61(1):141-52
pubmed: 17506824
Syst Biol. 2007 Aug;56(4):564-77
pubmed: 17654362
Nature. 2007 Nov 22;450(7169):560-5
pubmed: 18033299
Proc Natl Acad Sci U S A. 2010 Mar 23;107(12):5345-50
pubmed: 20212162
J Comp Physiol B. 2010 Nov;180(8):1143-53
pubmed: 20544203
Proc Natl Acad Sci U S A. 2010 Oct 12;107(41):17651-6
pubmed: 20876108
BMC Evol Biol. 2011 Jan 13;11:13
pubmed: 21232122
Science. 2011 Feb 4;331(6017):555-61
pubmed: 21292972
J Mol Biol. 1990 Oct 5;215(3):403-10
pubmed: 2231712
Proc Natl Acad Sci U S A. 2012 Mar 13;109(11):4197-202
pubmed: 22371593
Nucleic Acids Res. 2012 Jul;40(Web Server issue):W445-51
pubmed: 22645317
Science. 2012 Jun 29;336(6089):1715-9
pubmed: 22745431
Insect Biochem Mol Biol. 2012 Dec;42(12):935-45
pubmed: 23022604
Bioengineered. 2013 Jul-Aug;4(4):224-35
pubmed: 23314751
Mol Biol Evol. 2013 May;30(5):1196-205
pubmed: 23420840
Nucleic Acids Res. 2013 Jul;41(12):e121
pubmed: 23598997
BMC Genomics. 2013 Apr 23;14:274
pubmed: 23617724
Biotechnol Adv. 2013 Nov;31(6):838-50
pubmed: 23623853
Proc Natl Acad Sci U S A. 2013 Jun 18;110(25):10189-94
pubmed: 23733951
Cell. 2013 Jun 20;153(7):1567-78
pubmed: 23791183
PLoS One. 2013 Sep 04;8(9):e73827
pubmed: 24023907
Biomed Res Int. 2013;2013:420287
pubmed: 24069601
Nucleic Acids Res. 2014 Jan;42(Database issue):D490-5
pubmed: 24270786
Nat Rev Microbiol. 2014 Mar;12(3):168-80
pubmed: 24487819
Bioinformatics. 2014 Aug 1;30(15):2114-20
pubmed: 24695404
PLoS One. 2014 Apr 09;9(4):e94052
pubmed: 24718603
BMC Genomics. 2014 Aug 29;15:738
pubmed: 25168586
Mol Biol Evol. 2015 Jan;32(1):268-74
pubmed: 25371430
Nat Methods. 2015 Jan;12(1):59-60
pubmed: 25402007
Microbiol Mol Biol Rev. 2014 Dec;78(4):614-49
pubmed: 25428937
Mol Biol Evol. 2015 May;32(5):1365-71
pubmed: 25701167
Nucleic Acids Res. 2015 Jul 1;43(W1):W566-70
pubmed: 25969447
Bioinformatics. 2015 Oct 1;31(19):3210-2
pubmed: 26059717
Curr Opin Chem Biol. 2015 Dec;29:108-19
pubmed: 26583519
Nucleic Acids Res. 2016 Jan 4;44(D1):D279-85
pubmed: 26673716
Nucleic Acids Res. 2016 Jul 8;44(W1):W242-5
pubmed: 27095192
Sci Rep. 2016 Apr 29;6:25279
pubmed: 27125755
PLoS Comput Biol. 2016 Jun 21;12(6):e1004957
pubmed: 27327495
Front Microbiol. 2016 Sep 23;7:1472
pubmed: 27721806
Elife. 2016 Nov 16;5:
pubmed: 27849518
Oecologia. 1987 Jul;72(4):597-604
pubmed: 28312524
Oecologia. 1993 Feb;93(1):139-144
pubmed: 28313786
BMC Bioinformatics. 2017 Apr 12;18(1):214
pubmed: 28403817
Nat Methods. 2017 Jun;14(6):587-589
pubmed: 28481363
Mol Biol Evol. 2018 Feb 1;35(2):518-522
pubmed: 29077904
FEMS Microbiol Rev. 2017 Nov 1;41(6):941-962
pubmed: 29088355
Gene. 2018 Feb 5;642:408-422
pubmed: 29133147
Mol Biol Evol. 2018 Jan 2;:
pubmed: 29301006
Appl Microbiol Biotechnol. 2018 Mar;102(6):2477-2492
pubmed: 29411063
Nat Commun. 2018 Feb 22;9(1):756
pubmed: 29472725
Microbiome. 2018 Apr 25;6(1):78
pubmed: 29695294
Genes Genomics. 2018 Feb;40(2):167-176
pubmed: 29892920
Mycology. 2018 May 24;9(3):176-188
pubmed: 30181924
Microbiome. 2018 Sep 17;6(1):162
pubmed: 30223906
Nat Commun. 2018 Dec 3;9(1):5125
pubmed: 30510200

Auteurs

Marius Bredon (M)

Laboratoire Ecologie et Biologie des Interactions - UMR CNRS 7267, Equipe Ecologie Evolution Symbiose - Bâtiment B8-B35, Université de Poitiers, 5 rue Albert Turpain, TSA 51106, F-86073, Poitiers Cedex 9, France.

Benjamin Herran (B)

Laboratoire Ecologie et Biologie des Interactions - UMR CNRS 7267, Equipe Ecologie Evolution Symbiose - Bâtiment B8-B35, Université de Poitiers, 5 rue Albert Turpain, TSA 51106, F-86073, Poitiers Cedex 9, France.

Baptiste Lheraud (B)

Laboratoire Ecologie et Biologie des Interactions - UMR CNRS 7267, Equipe Ecologie Evolution Symbiose - Bâtiment B8-B35, Université de Poitiers, 5 rue Albert Turpain, TSA 51106, F-86073, Poitiers Cedex 9, France.

Joanne Bertaux (J)

Laboratoire Ecologie et Biologie des Interactions - UMR CNRS 7267, Equipe Ecologie Evolution Symbiose - Bâtiment B8-B35, Université de Poitiers, 5 rue Albert Turpain, TSA 51106, F-86073, Poitiers Cedex 9, France.

Pierre Grève (P)

Laboratoire Ecologie et Biologie des Interactions - UMR CNRS 7267, Equipe Ecologie Evolution Symbiose - Bâtiment B8-B35, Université de Poitiers, 5 rue Albert Turpain, TSA 51106, F-86073, Poitiers Cedex 9, France.

Bouziane Moumen (B)

Laboratoire Ecologie et Biologie des Interactions - UMR CNRS 7267, Equipe Ecologie Evolution Symbiose - Bâtiment B8-B35, Université de Poitiers, 5 rue Albert Turpain, TSA 51106, F-86073, Poitiers Cedex 9, France.

Didier Bouchon (D)

Laboratoire Ecologie et Biologie des Interactions - UMR CNRS 7267, Equipe Ecologie Evolution Symbiose - Bâtiment B8-B35, Université de Poitiers, 5 rue Albert Turpain, TSA 51106, F-86073, Poitiers Cedex 9, France. didier.bouchon@univ-poitiers.fr.

Articles similaires

Genome, Chloroplast Phylogeny Genetic Markers Base Composition High-Throughput Nucleotide Sequencing
Robotic Surgical Procedures Animals Humans Telemedicine Models, Animal

Odour generalisation and detection dog training.

Lyn Caldicott, Thomas W Pike, Helen E Zulch et al.
1.00
Animals Odorants Dogs Generalization, Psychological Smell
Animals TOR Serine-Threonine Kinases Colorectal Neoplasms Colitis Mice

Classifications MeSH