An enzymatic pathway in the human gut microbiome that converts A to universal O type blood.


Journal

Nature microbiology
ISSN: 2058-5276
Titre abrégé: Nat Microbiol
Pays: England
ID NLM: 101674869

Informations de publication

Date de publication:
09 2019
Historique:
received: 27 12 2018
accepted: 25 04 2019
pubmed: 12 6 2019
medline: 22 1 2020
entrez: 12 6 2019
Statut: ppublish

Résumé

Access to efficient enzymes that can convert A and B type red blood cells to 'universal' donor O would greatly increase the supply of blood for transfusions. Here we report the functional metagenomic screening of the human gut microbiome for enzymes that can remove the cognate A and B type sugar antigens. Among the genes encoded in our library of 19,500 expressed fosmids bearing gut bacterial DNA, we identify an enzyme pair from the obligate anaerobe Flavonifractor plautii that work in concert to efficiently convert the A antigen to the H antigen of O type blood, via a galactosamine intermediate. The X-ray structure of the N-acetylgalactosamine deacetylase reveals the active site and mechanism of the founding member of an esterase family. The galactosaminidase expands activities within the CAZy family GH36. Their ability to completely convert A to O of the same rhesus type at very low enzyme concentrations in whole blood will simplify their incorporation into blood transfusion practice, broadening blood supply.

Identifiants

pubmed: 31182795
doi: 10.1038/s41564-019-0469-7
pii: 10.1038/s41564-019-0469-7
doi:

Substances chimiques

ABO Blood-Group System 0
Bacterial Proteins 0
Blood Group Antigens 0
Hexosaminidases EC 3.2.1.-
Amidohydrolases EC 3.5.-
acetylgalactosamine deacetylase EC 3.5.1.-

Types de publication

Journal Article Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

1475-1485

Subventions

Organisme : CIHR
ID : MOP-136940
Pays : Canada
Organisme : NIGMS NIH HHS
ID : R24 GM098791
Pays : United States

Commentaires et corrections

Type : CommentIn

Références

Daniels, G. The molecular definition of red cell antigens. ISBT Sci. Ser. 5, 300–302 (2010).
doi: 10.1111/j.1751-2824.2010.01386.x
Garratty, G. Modulating the red cell membrane to produce universal/stealth donor red cells suitable for transfusion. Vox Sang. 94, 87–95 (2008).
pubmed: 18034787
Goldstein, J., Siviglia, G., Hurst, R., Lenny, L. & Reich, L. Group-B erythrocytes enzymatically converted to Group-O survive normally in A, B, and O individuals. Science 215, 168–170 (1982).
doi: 10.1126/science.6274021
Kruskall, M. S. et al. Transfusion to blood group A and O patients of group B RBCs that have been enzymatically converted to group O. Transfusion 40, 1290–1298 (2000).
doi: 10.1046/j.1537-2995.2000.40111290.x
Clausen, H. & Hakomori, S. Abh and related histo-blood group antigens - immunochemical differences in carrier isotypes and their distribution. Vox Sang. 56, 1–20 (1989).
doi: 10.1159/000460912
Liu, Q. P. et al. Bacterial glycosidases for the production of universal red blood cells. Nat. Biotechnol. 25, 454–464 (2007).
doi: 10.1038/nbt1298
Anderson, K. M. et al. A clostridial endo-beta-galactosidase that cleaves both blood group A and B glycotopes. J. Biol. Chem. 280, 7720–7728 (2005).
doi: 10.1074/jbc.M414099200
Kwan, D. H. et al. Toward efficient enzymes for the generation of universal blood through structure-guided directed evolution. J. Am. Chem. Soc. 137, 5695–5705 (2015).
doi: 10.1021/ja5116088
Handelsman, J. Metagenomics: Application of genomics to uncultured microorganisms. Microbiol. Mol. Biol. R. 68, 669–685 (2004).
doi: 10.1128/MMBR.68.4.669-685.2004
Amann, R. I. et al. Combination of 16S ribosomal-RNA-targeted oligonucleotide probes with flow-cytometry for analyzing mixed microbial-populations. Appl. Environ. Microbiol. 56, 1919–1925 (1990).
pubmed: 2200342 pmcid: 184531
Tailford, L. E., Crost, E. H., Kavanaugh, D. & Juge, N. Mucin glycan foraging in the human gut microbiome. Front. Genet. 6, 81 (2015).
doi: 10.3389/fgene.2015.00081
Lombard, V., Ramulu, H. G., Drula, E., Coutinho, P. M. & Henrissat, B. The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res. 42, D490–D495 (2014).
doi: 10.1093/nar/gkt1178
Konwar, K. M. et al. MetaPathwaysv2.5: quantitative functional, taxonomic and usability improvements. Bioinformatics 31, 3345–3347 (2015).
doi: 10.1093/bioinformatics/btv361
Li, H. et al. The outer mucus layer hosts a distinct intestinal microbial niche. Nat. Commun. 6, 8292 (2015).
doi: 10.1038/ncomms9292
Yip, V. L. Y. et al. An unusual mechanism of glycoside hydrolysis involving redox and elimination steps by a family 4 beta-glycosidase from Thermotoga maritima. J. Am. Chem. Soc. 126, 8354–8355 (2004).
doi: 10.1021/ja047632w
Chapanian, R. et al. Enhancement of biological reactions on cell surfaces via macromolecular crowding. Nat. Commun. 5, 4683 (2014).
doi: 10.1038/ncomms5683
Comfort, D. A. et al. Biochemical analysis of Thermotoga maritima GH36 alpha-galactosidase (TmGalA) confirms the mechanistic commonality of clan GH-D glycoside hydrolases. Biochemistry 46, 3319–3330 (2007).
doi: 10.1021/bi061521n
Fredslund, F. et al. Crystal structure of alpha-galactosidase from Lactobacillus acidophilus NCFM: insight into tetramer formation and substrate binding. J. Mol. Biol. 412, 466–480 (2011).
doi: 10.1016/j.jmb.2011.07.057
Calcutt, M. J., Hsieh, H. Y., Chapman, L. F. & Smith, D. S. Identification, molecular cloning and expression of an alpha-N-acetylgalactosaminidase gene from Clostridium perfringens. FEMS Microbiol. Lett. 214, 77–80 (2002).
pubmed: 12204375
Gerbal, A., Maslet, C. & Salmon, C. Immunological aspects of the acquired B antigen. Vox Sang. 28, 398–403 (1975).
doi: 10.1159/000466859
Judd, W. J. & Annesley, T. M. The acquired-B phenomenon. Transfus. Med. Rev. 10, 111–117 (1996).
doi: 10.1016/S0887-7963(96)80087-3
Marcus, D. M., Kabat, E. A. & Schiffman, G. Immunochemical studies on blood groups. XXXI. Destruction of blood group a activity by an enzyme from Clostridium tertium which deacetylates N-acetylgalactosamine in intact blood group substances. Biochemistry 3, 437–443 (1964).
doi: 10.1021/bi00891a023
Yamamoto, H. & Iseki, S. Development of H-specificity in A substance by A-decomposing enzyme from Clostridium tertium A. P. Jpn Acad. 44, 263 (1968).
doi: 10.2183/pjab1945.44.263
Kelley, L. A., Mezulis, S., Yates, C. M., Wass, M. N. & Sternberg, M. J. E. The Phyre2 web portal for protein modeling, prediction and analysis. Nat. Protoc. 10, 845–858 (2015).
doi: 10.1038/nprot.2015.053
Blair, D. E., Schuttelkopf, A. W., MacRae, J. I. & van Aalten, D. M. F. Structure and metal-dependent mechanism of peptidoglycan deacetylase, a streptococcal virulence factor. Proc. Natl Acad. Sci. USA 102, 15429–15434 (2005).
doi: 10.1073/pnas.0504339102
Ficko-Blean, E. & Boraston, A. B. The interaction of a carbohydrate-binding module from a Clostridium perfringens N-acetyl-beta-hexosaminidase with its carbohydrate receptor. J. Biol. Chem. 281, 37748–37757 (2006).
doi: 10.1074/jbc.M606126200
Cohen, M., Hurtado-Ziola, N. & Varki, A. ABO blood group glycans modulate sialic acid recognition on erythrocytes. Glycobiology 19, 1349–1349 (2009).
Hyono, A. et al. Impacts of papain and neuraminidase enzyme treatment on electrohydrodynamics and IgG-mediated agglutination of type A red blood cells. Langmuir 25, 10873–10885 (2009).
doi: 10.1021/la900087c
Varki, A. et al. Symbol nomenclature for graphical representations of glycans. Glycobiology 25, 1323–1324 (2015).
doi: 10.1093/glycob/cwv091
Kwan, D. H., Ernst, S., Kötzler, M. P. & Withers, S. G. Chemoenzymatic synthesis of a type 2 blood group a tetrasaccharide and development of high-throughput assays enables a platform for screening blood group antigen-cleaving enzymes. Glycobiology 25, 806–811 (2015).
doi: 10.1093/glycob/cwv031
Armstrong, Z., Rahfeld, P. & Withers, S. G. Discovery of new glycosidases from metagenomic libraries. Methods Enzymol. Chem. Glycobiol. A 597, 3–23 (2017).
doi: 10.1016/bs.mie.2017.06.001
Lee, S. & Hallam, S. J. Extraction of high molecular weight genomic DNA from soils and sediments. J. Vis. Exp. 33, e1569 (2009).
Lee, E., Chuang, H. Y., Kim, J. W., Ideker, T. & Lee, D. Inferring pathway activity toward precise disease classification. PloS Comput. Biol. 4, e1000217 (2008).
doi: 10.1371/journal.pcbi.1000217
Jeong, J. K. et al. Characterization of the Streptococcus pneumoniae BgaC protein as a novel surface beta-galactosidase with specific hydrolysis activity for the gal beta 1-3GlcNAc moiety of oligosaccharides. J. Bacteriol. 191, 3011–3023 (2009).
doi: 10.1128/JB.01601-08
Singh, A. K. et al. Unravelling the multiple functions of the architecturally intricate Streptococcus pneumoniae beta-galactosidase, BgaA. PLoS Pathog. 10, e1004364 (2014).
doi: 10.1371/journal.ppat.1004364
Katayama, T. et al. Molecular cloning and characterization of Bifidobacterium bifidum 1,2-alpha-L-fucosidase (AfcA), a novel inverting glycosidase (glycoside hydrolase family 95). J. Bacteriol. 186, 4885–4893 (2004).
doi: 10.1128/JB.186.15.4885-4893.2004
Williams, S. J. & Withers, S. G. Glycosynthases: mutant glycosidases for glycoside synthesis. Aust. J. Chem. 55, 3–12 (2002).
doi: 10.1071/CH02005
Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).
doi: 10.1093/bioinformatics/btu170
Li, H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. arXiv https://arxiv.org/abs/1303.3997 (2013).
Li, D., Liu, C. M., Luo, R., Sadakane, K. & Lam, T. W. MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics 31, 1674–1676 (2015).
doi: 10.1093/bioinformatics/btv033
Treangen, T. J., Sommer, D. D., Angly, F. E., Koren, S. & Pop, M. Next generation sequence assembly with AMOS. Curr. Protoc. Bioinformatics 33, 11.8.1–11.8.18 (2011).
Hyatt, D. et al. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics 11, 119 (2010).
doi: 10.1186/1471-2105-11-119
Engler, C., Kandzia, R. & Marillonnet, S. A one pot, one step, precision cloning method with high throughput capability. PLoS ONE 3, e3647 (2008).
doi: 10.1371/journal.pone.0003647
Studier, F. W. Protein production by auto-induction in high-density shaking cultures. Protein Expr. Purif. 41, 207–234 (2005).
doi: 10.1016/j.pep.2005.01.016
Klock, H. E., Koesema, E. J., Knuth, M. W. & Lesley, S. A. Combining the polymerase incomplete primer extension method for cloning and mutagenesis with microscreening to accelerate structural genomics efforts. Proteins 71, 982–994 (2008).
doi: 10.1002/prot.21786
Palmier, M. O. & Van Doren, S. R. Rapid determination of enzyme kinetics from fluorescence: overcoming the inner filter effect. Anal. Biochem. 371, 43–51 (2007).
doi: 10.1016/j.ab.2007.07.008
Kabsch, W. XDS. Acta Crystallogr. D 66, 125–132 (2010).
doi: 10.1107/S0907444909047337
Evans, P. R. & Murshudov, G. N. How good are my data and what is the resolution? Acta Crystallogr. D 69, 1204–1214 (2013).
doi: 10.1107/S0907444913000061
Skubak, P. & Pannu, N. S. Automatic protein structure solution from weak X-ray data. Nat. Commun. 4, 2777 (2013).
doi: 10.1038/ncomms3777
Potterton, L. et al. CCP4i2: the new graphical user interface to the CCP4 program suite. Acta Crystallogr. D 74, 68–84 (2018).
doi: 10.1107/S2059798317016035
Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D 60, 2126–2132 (2004).
doi: 10.1107/S0907444904019158
Vagin, A. A. et al. REFMAC5 dictionary: organization of prior chemical knowledge and guidelines for its use. Acta Crystallogr. D 60, 2184–2195 (2004).
doi: 10.1107/S0907444904023510
Chen, V. B. et al. MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr. D 66, 12–21 (2010).
doi: 10.1107/S0907444909042073
Zheng, L., Baumann, U. & Reymond, J. L. An efficient one-step site-directed and site-saturation mutagenesis protocol. Nucleic Acids Res. 32, e115 (2004).
doi: 10.1093/nar/gnh110
Vocadlo, D. J., Wicki, J., Rupitz, K. & Withers, S. G. Mechanism of Thermoanaerobacterium saccharolyticum ss-xylosidase: kinetic studies. Biochemistry 41, 9727–9735 (2002).
doi: 10.1021/bi020077v
Jones, D. R. et al. SACCHARIS: an automated pipeline to streamline discovery of carbohydrate active enzyme activities within polyspecific families and de novo sequence datasets. Biotechnol. Biofuels 11, 27 (2018).
doi: 10.1186/s13068-018-1027-x
Yin, Y. B. et al. dbCAN: a web resource for automated carbohydrate-active enzyme annotation. Nucleic Acids Res. 40, W445–W451 (2012).
doi: 10.1093/nar/gks479
Edgar, R. C. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26, 2460–2461 (2010).
doi: 10.1093/bioinformatics/btq461
Stamatakis, A. RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22, 2688–2690 (2006).
doi: 10.1093/bioinformatics/btl446
Stamatakis, A., Hoover, P. & Rougemont, J. A rapid bootstrap algorithm for the RAxML web servers. Syst. Biol. 57, 758–771 (2008).
doi: 10.1080/10635150802429642
Eddy, S. R. Profile hidden Markov models. Bioinformatics 14, 755–763 (1998).
doi: 10.1093/bioinformatics/14.9.755
Capella-Gutierrez, S., Silla-Martinez, J. M. & Gabaldon, T. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25, 1972–1973 (2009).
doi: 10.1093/bioinformatics/btp348
Matsen, F. A., Hoffman, N. G., Gallagher, A. & Stamatakis, A. A format for phylogenetic placements. PLoS ONE 7, e31009 (2012).
doi: 10.1371/journal.pone.0031009
Letunic, I. & Bork, P. Interactive tree of life (iTOL) v3: an online tool for the display and annotation of phylogenetic and other trees. Nucleic Acids Res. 44, W242–W245 (2016).
doi: 10.1093/nar/gkw290

Auteurs

Peter Rahfeld (P)

Department of Chemistry, University of British Columbia, Vancouver, British Columbia, Canada.
Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada.

Lyann Sim (L)

Department of Chemistry, University of British Columbia, Vancouver, British Columbia, Canada.
Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada.

Haisle Moon (H)

Department of Pathology and Laboratory Medicine, Life Sciences Centre, University of British Columbia, Vancouver, British Columbia, Canada.
Centre for Blood Research, Life Sciences Centre, University of British Columbia, Vancouver, British Columbia, Canada.

Iren Constantinescu (I)

Department of Pathology and Laboratory Medicine, Life Sciences Centre, University of British Columbia, Vancouver, British Columbia, Canada.
Centre for Blood Research, Life Sciences Centre, University of British Columbia, Vancouver, British Columbia, Canada.

Connor Morgan-Lang (C)

Department of Microbiology and Immunology, Life Sciences Centre, University of British Columbia, Vancouver, British Columbia, Canada.
Graduate Program in Bioinformatics, Genome Sciences Centre, University of British Columbia, Vancouver, British Columbia, Canada.

Steven J Hallam (SJ)

Department of Microbiology and Immunology, Life Sciences Centre, University of British Columbia, Vancouver, British Columbia, Canada.

Jayachandran N Kizhakkedathu (JN)

Department of Pathology and Laboratory Medicine, Life Sciences Centre, University of British Columbia, Vancouver, British Columbia, Canada.
Centre for Blood Research, Life Sciences Centre, University of British Columbia, Vancouver, British Columbia, Canada.

Stephen G Withers (SG)

Department of Chemistry, University of British Columbia, Vancouver, British Columbia, Canada. withers@chem.ubc.ca.
Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada. withers@chem.ubc.ca.
Department of Biochemistry, Life Sciences Centre, University of British Columbia, Vancouver, British Columbia, Canada. withers@chem.ubc.ca.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH