Left atrial microvascular endothelial dysfunction, myocardial inflammation and fibrosis after selective insular cortex ischemic stroke.
Arrhythmia
Coronary microvascular endothelial dysfunction
Myocardial fibrosis
Myocardial inflammation
Stroke
Journal
International journal of cardiology
ISSN: 1874-1754
Titre abrégé: Int J Cardiol
Pays: Netherlands
ID NLM: 8200291
Informations de publication
Date de publication:
01 10 2019
01 10 2019
Historique:
received:
18
04
2019
revised:
15
05
2019
accepted:
01
06
2019
pubmed:
15
6
2019
medline:
13
6
2020
entrez:
15
6
2019
Statut:
ppublish
Résumé
Insular cortex (IC) ischemic strokes are associated with increased risk of cardiac arrhythmias. We have previously hypothesized that the anatomical substrate for post-stroke neurogenic arrhythmias comprises stroke-induced left atrium (LA) coronary microvascular endothelial dysfunction (CMED), and myocardial inflammatory infiltration (MII) leading to myocardial fibrosis. We investigated whether selectively induced IC ischemic stroke in rats results in histopathological changes in the LA. Insular ischemic stroke was induced in 6-month old male Wistar rats via unilateral stereotaxic injection of endothelin-1 into the left or right IC. The control group consisted of rats injected with saline. We histologically examined the LA 28 days after stroke for CMED, MII, and fibrosis. We performed linear regression analyses to assess correlation between the 3 histopathological outcomes. We compared these findings in the distal LA and the LA-pulmonary vein border (LA-PV border), a region of rich autonomic innervation. Right and left IC stroke led to CMED, MII, and fibrosis in the LA. MII was significantly correlated with CMED and fibrosis. The LA-PV border had significantly greater MII and fibrosis than the distal LA. There were no differences in coronary microvascular and myocardial changes between left and right IC strokes. Left and right insular ischemic strokes resulted in CMED, MII, and fibrosis, the pathological hallmark of arrhythmogenic LA tissue. Since these changes were greater within the LA-PV border than in the distal LA tissue, the role of preganglionic fibers at the ganglionated plexi as part of neurogenic arrhythmogenesis warrants further investigation.
Sections du résumé
BACKGROUND
Insular cortex (IC) ischemic strokes are associated with increased risk of cardiac arrhythmias. We have previously hypothesized that the anatomical substrate for post-stroke neurogenic arrhythmias comprises stroke-induced left atrium (LA) coronary microvascular endothelial dysfunction (CMED), and myocardial inflammatory infiltration (MII) leading to myocardial fibrosis. We investigated whether selectively induced IC ischemic stroke in rats results in histopathological changes in the LA.
METHODS
Insular ischemic stroke was induced in 6-month old male Wistar rats via unilateral stereotaxic injection of endothelin-1 into the left or right IC. The control group consisted of rats injected with saline. We histologically examined the LA 28 days after stroke for CMED, MII, and fibrosis. We performed linear regression analyses to assess correlation between the 3 histopathological outcomes. We compared these findings in the distal LA and the LA-pulmonary vein border (LA-PV border), a region of rich autonomic innervation.
RESULTS
Right and left IC stroke led to CMED, MII, and fibrosis in the LA. MII was significantly correlated with CMED and fibrosis. The LA-PV border had significantly greater MII and fibrosis than the distal LA. There were no differences in coronary microvascular and myocardial changes between left and right IC strokes.
CONCLUSIONS
Left and right insular ischemic strokes resulted in CMED, MII, and fibrosis, the pathological hallmark of arrhythmogenic LA tissue. Since these changes were greater within the LA-PV border than in the distal LA tissue, the role of preganglionic fibers at the ganglionated plexi as part of neurogenic arrhythmogenesis warrants further investigation.
Identifiants
pubmed: 31196685
pii: S0167-5273(19)32036-4
doi: 10.1016/j.ijcard.2019.06.004
pii:
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
148-155Commentaires et corrections
Type : CommentIn
Type : CommentIn
Informations de copyright
Copyright © 2019 Elsevier B.V. All rights reserved.