Should I stay or should I go? Pollinator shifts rather than cospeciation dominate the evolutionary history of South African Rediviva bees and their Diascia host plants.


Journal

Molecular ecology
ISSN: 1365-294X
Titre abrégé: Mol Ecol
Pays: England
ID NLM: 9214478

Informations de publication

Date de publication:
09 2019
Historique:
received: 22 04 2019
accepted: 19 06 2019
pubmed: 25 6 2019
medline: 12 6 2020
entrez: 25 6 2019
Statut: ppublish

Résumé

Plant-pollinator interactions are often highly specialised, which may be a consequence of co-evolution. Yet when plants and pollinators co-evolve, it is not clear if this will also result in frequent cospeciation. Here, we investigate the mutual evolutionary history of South African oil-collecting Rediviva bees and their Diascia host plants, in which the elongated forelegs of female Rediviva have been suggested to coevolve with the oil-producing spurs of their Diascia hosts. After controlling for phylogenetic nonindependence, we found Rediviva foreleg length to be significantly correlated with Diascia spur length, suggestive of co-evolution. However, as trait correlation could also be due to pollinator shifts, we tested if cospeciation or pollinator shifts have dominated the evolution of Rediviva-Diascia interactions by analysing phylogenies in a cophylogenetic framework. Distance-based cophylogenetic analyses (PARAFIT, PACo) indicated significant congruence of the two phylogenies under most conditions. Yet, we found that phylogenetic relatedness was correlated with ecological similarity (the spectrum of partners that each taxon interacted with) only for Diascia but not for Rediviva, suggesting that phylogenetic congruence might be due to phylogenetic tracking by Diascia of Rediviva rather than strict (reciprocal) co-evolution. Furthermore, event-based reconciliation using a parsimony approach (CORE-PA) on average revealed only 11-13 cospeciation events but 58-80 pollinator shifts. Probabilistic cophylogenetic analyses (COALA) supported this trend (8-29 cospeciations vs. 40 pollinator shifts). Our study suggests that diversification of Diascia has been largely driven by Rediviva (phylogenetic tracking, pollinator shifts) but not vice versa. Moreover, our data suggest that, even in co-evolving mutualisms, cospeciation events might occur only infrequently.

Identifiants

pubmed: 31232488
doi: 10.1111/mec.15154
doi:

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

4118-4133

Informations de copyright

© 2019 John Wiley & Sons Ltd.

Références

Adams, D. C., & Nason, J. D. (2017). A phylogenetic comparative method for evaluating trait coevolution across two phylogenies for sets of interacting species. Evolution, 72(2), 234-243. https://doi.org/10.1111/evo.13415
Althoff, D. M., Fox, K. A., & Frieden, T. (2014). The role of ecological availability and host plant characteristics in determining host use by the bogus yucca moth Prodoxus decipiens: Host use in a bogus yucca moth. Ecological Entomology, 39(5), 620-626. https://doi.org/10.1111/een.12141
Althoff, D. M., Segraves, K. A., & Johnson, M. T. J. J. (2014). Testing for coevolutionary diversification: Linking pattern with process. Trends in Ecology and Evolution, 29(2), 82-89. https://doi.org/10.1016/j.tree.2013.11.003
Althoff, D. M., Segraves, K. A., Smith, C. I., Leebens-Mack, J., & Pellmyr, O. (2012). Geographic isolation trumps coevolution as a driver of yucca and yucca moth diversification. Molecular Phylogenetics and Evolution, 62(3), 898-906. https://doi.org/10.1016/j.ympev.2011.11.024
Anderson, B. (2015). Coevolution in mutualisms. In J. L. Bronstein (Ed.), Mutualism, 1st ed. Oxford, UK: Oxford University Press.
Anderson, B., & Johnson, S. D. (2007). The geographical mosaic of coevolution in a plant-pollinator mutualism. Evolution, 62(1), 220-225. https://doi.org/10.1111/j.1558-5646.2007.00275.x
Arditti, J., Elliott, J., Kitching, I., & Wasserthal, L. T. (2012). “Good Heavens what insect can suck it”-Charles Darwin, Angraecum sesquipedale and Xantophan morganii praedicta. Biological Journal of the Linnean Society, 169, 403-432. https://doi.org/10.1111/j.1095-8339.2012.01250.x
Balbuena, J. A., Miguez-Lozano, R., & Blasco-Costa, I. (2013). PACo: A novel procrustes application to cophylogenetic analysis. PLoS ONE, 8(4), e61048. https://doi.org/10.1371/journal.pone.0061048
Bascompte, J., & Jordano, P. (2007). Plant-animal mutualistic networks: the architecture of biodiversity. Annu. Rev. Ecol. Evol. Syst., 38, 567-593.
Baudet, C., Donati, B., Sinaimeri, B., Crescenzi, P., Gautier, C., Matias, C., & Sagot, M. F. (2015). Cophylogeny reconstruction via an approximate bayesian computation. Systematic Biology, 64(3), 416-431. https://doi.org/10.1093/sysbio/syu129
Benjamini, Y., & Hochberg, Y. (1995). Controlling the false discovery rate: A practical and powerful approach to multiple testing. Journal of the Royal Statistical Society. Series B (Methodological), 57(1), 289-300.
Boberg, E., Alexandersson, R., Jonsson, M., Maad, J., Ågren, J., & Nilsson, L. A. (2014). Pollinator shifts and the evolution of spur length in the moth-pollinated orchid Platanthera bifolia. Annals of Botany, 113(2), 267-275. https://doi.org/10.1093/aob/mct217
Chacoff, N. P., Resasco, J., & Vázquez, D. P. (2018). Interaction frequency, network position, and the temporal persistence of interactions in a plant-pollinator network. Ecology, 99(1), 21-28.
Chase, B. M., & Meadows, M. E. (2007). Late Quaternary dynamics of southern Africa's winter rainfall zone. Earth-Science Reviews, 84(3), 103-138. https://doi.org/10.1016/j.earscirev.2007.06.002
Cook, J. M., & Rasplus, J. Y. (2003). Mutualists with attitude: Coevolving fig wasps and figs. Trends in Ecology and Evolution, 18(5), 241-248. https://doi.org/10.1016/S0169-5347(03)00062-4
Cosacov, A., Cocucci, A. A., & Sérsic, A. N. (2014). Geographical differentiation in floral traits across the distribution range of the Patagonian oil-secreting Calceolaria polyrhiza: Do pollinators matter? Annals of Botany, 113(2), 251-266. https://doi.org/10.1093/aob/mct239
Cowling, R. M., Procheş, Ş., & Partridge, T. C. (2009). Explaining the uniqueness of the Cape flora: Incorporating geomorphic evolution as a factor for explaining its diversification. Molecular Phylogenetics and Evolution, 51(1), 64-74. https://doi.org/10.1016/j.ympev.2008.05.034
Cruaud, A., Cook, J., Da-Rong, Y., Genson, G., Jabbour-Zahab, R., Kjellberg, F., & Rasplus, J.-Y. (2012). Fig-fig wasp mutualism: The fall of the strict cospeciation paradigm? In S. Patiny (Ed.), Evolution of plant-pollinator relationships (1st ed., pp. 68-102). Cambridge, UK: Cambridge University Press.
Cruaud, A., Rønsted, N., Chantarasuwan, B., Chou, L. S., Clement, W. L., Couloux, A., … Savolainen, V. (2012). An extreme case of plant-insect codiversification: Figs and fig-pollinating wasps. Systematic Biology, 61(6), 1029-1047. https://doi.org/10.1093/sysbio/sys068
Darwin, C. (1862). On the various contrivances by which British and foreign orchids are fertilized by insects, and on the good effects of intercrossing. London, UK: John Murray.
de Oliveira Carneiro, I., Sander, A.-L., Silva, N., Moreira-Soto, A., Normann, A., Flehmig, B., … Drexler, J. F. (2018). A novel marsupial Hepatitis A virus corroborates complex evolutionary patterns shaping the genus Hepatovirus. Journal of Virology, 92(13), e00082-18. https://doi.org/10.1128/JVI.00082-18
De Vienne, D. M., Refrégier, G., López-Villavicencio, M., Tellier, A., Hood, M. E., & Giraud, T. (2013). Cospeciation vs host-shift speciation: Methods for testing, evidence from natural associations and relation to coevolution. New Phytologist, 198(2), 347-385. https://doi.org/10.1111/nph.12150
Donati, B., Baudet, C., Sinaimeri, B., Crescenzi, P., & Sagot, M.-F. (2015). eucalypt: Efficient tree reconciliation enumerator. Algorithms for Molecular Biology, 10, 3. https://doi.org/10.1186/s13015-014-0031-3
Dormann, C. F., & Strauss, R. (2014). A method for detecting modules in quantitative bipartite networks. Methods in Ecology and Evolution, 5(1), 90-98. https://doi.org/10.1111/2041-210X.12139
Dos Reis, M., Thawornwattana, Y., Angelis, K., Telford, M. J., Donoghue, P. C. J., & Yang, Z. (2015). Uncertainty in the timing of origin of animals and the limits of precision in molecular timescales. Current Biology, 25(22), 2939-2950. https://doi.org/10.1016/j.cub.2015.09.066
Dos Reis, M., & Yang, Z. (2013). The unbearable uncertainty of Bayesian divergence time estimation. Journal of Systematics and Evolution, 51(1), 30-43. https://doi.org/10.1111/j.1759-6831.2012.00236.x
Ehrlich, P. R., & Raven, P. H. (1964). Butterflies and plants: A study in coevolution. Evolution, 18(4), 586-608. https://doi.org/10.1111/j.1558-5646.1964.tb01674.x
Fahrenholz, H. (1913). Ektoparasiten und Abstammungslehre. Zoologischer Anzeiger, 41, 371-374.
Gervasi, D. D. L., & Schiestl, F. P. (2017). Real-time divergent evolution in plants driven by pollinators. Nature Communications, 8, 1-8. https://doi.org/10.1038/ncomms14691
Godsoe, W., Yoder, J. B., Irwin Smith, C., & Pellmyr, O. (2008). Coevolution and divergence in the Joshua tree/yucca moth mutualism. The American Naturalist, 171(6), 816-823. https://doi.org/10.1086/587757
Gomard, Y., Dietrich, M., Wieseke, N., Ramasindrazana, B., Lagadec, E., Goodman, S. M., … Tortosa, P. (2016). Malagasy bats shelter a considerable genetic diversity of pathogenic Leptospira suggesting notable host-specificity patterns. FEMS Microbiology Ecology, 92(4), 1-12. https://doi.org/10.1093/femsec/fiw037
Grant, V., & Grant, K. A. (1965). Flower pollination in the phlox family. New York, NY: Columbia University Press.
Harmon, L. J., Weir, J. T., Brock, C. D., Glor, R. E., & Challenger, W. (2008). geiger: Investigating evolutionary radiations. Bioinformatics, 24(1), 129-131. https://doi.org/10.1093/bioinformatics/btm538
Hembry, D. H., & Althoff, D. M. (2016). Diversification and coevolution in brood pollination mutualisms: Windows into the role of biotic interactions in generating biological diversity. American Journal of Botany, 103(10), 1783-1792. https://doi.org/10.3732/ajb.1600056
Hembry, D. H., Kawakita, A., Gurr, N. E., Schmaedick, M. A., Baldwin, B. G., & Gillespie, R. G. (2013). Non-congruent colonizations and diversification in a coevolving pollination mutualism on oceanic islands. Proceedings of the Royal Society B: Biological Sciences, 280(1761), 20130361. https://doi.org/10.1098/rspb.2013.0361
Hembry, D. H., Yoder, J. B., & Goodman, K. R. (2014). Coevolution and the diversification of life. The American Naturalist, 184(4), 425-438. https://doi.org/10.1086/677928
Hennig, C., & Hausdorf, B. (2015). prabclus: Functions for clustering of presence-absence, abundance and multilocus genetic data. R package version 2.2-6. Retrieved from https://cran.r-project.org/package=prabclus
Hollens, H., van der Niet, T., Cozien, R., & Kuhlmann, M. (2016). A spurious inference : Pollination is not more specialized in long- spurred than in spurless species in Diascia - Rediviva mutualisms. Flora - Morphology, Distribution, Functional Ecology of Plants, 232, 73-82. https://doi.org/10.1016/j.flora.2016.12.006
Hutchinson, M. C., Cagua, E. F., & Stouffer, D. B. (2017). Cophylogenetic signal is detectable in pollination interactions across ecological scales. Ecology, 98(10), 2640-2652. https://doi.org/10.1002/ecy.1955
Janz, N. (2011). Ehrlich and Raven revisited: Mechanisms underlying codiversification of plants and enemies. Annual Review of Ecology, Evolution, and Systematics, 42(1), 71-89. https://doi.org/10.1146/annurev-ecolsys-102710-145024
Janzen, D. H. (1980). When is it coevolution? Evolution, 34(3), 611-612. https://doi.org/10.1111/j.1558-5646.1980.tb04849.x
Johnson, S. D. (2010). The pollination niche and its role in the diversification and maintenance of the southern African flora. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 365(1539), 499-516. https://doi.org/10.1098/rstb.2009.0243
Johnson, S. D., & Anderson, B. (2010). Coevolution between food-rewarding flowers and their pollinators. Evolution: Education and Outreach, 3(1), 32-39. https://doi.org/10.1007/s12052-009-0192-6
Johnson, S. D., & Steiner, K. E. (2003). Specialized pollination systems in southern Africa. South African Journal of Science, 99(August), 345-348.
Kahnt, B., Montgomery, G. A., Murray, E., Kuhlmann, M., Pauw, A., Michez, D., … Danforth, B. N. (2017). Playing with extremes: Origins and evolution of exaggerated female forelegs in South African Rediviva bees. Molecular Phylogenetics and Evolution, 115(6), 95-105. https://doi.org/10.1016/j.ympev.2017.07.025
Kahnt, B., Theodorou, P., Soro, A., Hollens-Kuhr, H., Kuhlmann, M., Pauw, A., & Paxton, R. J. (2018). Small and genetically highly structured populations in a long-legged bee, Rediviva longimanus, as inferred by pooled RAD-seq. BMC Evolutionary Biology, 18(1), 196. https://doi.org/10.1186/s12862-018-1313-z
Kawakita, A., Takimura, A., Terachi, T., Sota, T., & Kato, M. (2004). Cospeciation analysis of an obligate pollination mutualism: Have Glochidion trees (Euphorbiaceae) and pollinating Epicephala moths (Gracillariidae) diversified in parallel? Evolution, 58(10), 2201. https://doi.org/10.1554/04-187
Kuhlmann, M. (2014). Nest architecture and use of floral oil in the oil-collecting South African solitary bee Rediviva intermixta (Cockerell) (Hymenoptera: Apoidea: Melittidae). Journal of Natural History, 48(43-44), 2633-2644. https://doi.org/10.1080/00222933.2014.909069
Laine, A.-L. (2009). Role of coevolution in generating biological diversity: Spatially divergent selection trajectories. Journal of Experimental Botany, 60(11), 2957-2970. https://doi.org/10.1093/jxb/erp168
Legendre, P., Desdevises, Y., & Bazin, E. (2002). A statistical test for host-parasite coevolution. Systematic Biology, 51(2), 217-234. https://doi.org/10.1080/10635150252899734
Machado, C. A., Robbins, N., Gilbert, M. T. P., & Herre, E. A. (2005). Critical review of host specificity and its coevolutionary implications in the fig/fig-wasp mutualism. Proceedings of the National Academy of Sciences of the United States of America, 102(Suppl. 1), 6558-6565. https://doi.org/10.1073/pnas.0501840102
Mélade, J., Wieseke, N., Ramasindrazana, B., Flores, O., Lagadec, E., Gomard, Y., … Pascalis, H. (2016). An eco-epidemiological study of Morbilli-related paramyxovirus infection in Madagascar bats reveals host-switching as the dominant macro-evolutionary mechanism. Scientific Reports, 6, 23752. https://doi.org/10.1038/srep23752
Merkle, D., Middendorf, M., & Wieseke, N. (2010). A parameter-adaptive dynamic programming approach for inferring cophylogenies. BMC Bioinformatics, 11(Suppl. 1), S60. https://doi.org/10.1186/1471-2105-11-S1-S60
Michez, D., Patiny, S., Rasmont, P., Timmermann, K., & Vereecken, N. J. (2008). Phylogeny and host-plant evolution in Melittidae s.l. (Hymenoptera: Apoidea). Apidologie, 39(1), 146-162. https://doi.org/10.1051/apido:2007048
Morand, S., Krasnov, B. R., & Littlewood, D. T. J. (2015). Parasite diversity and diversification: Evolutionary ecology meets phylogenetics (1st ed.). Cambridge, UK: Cambridge University Press.
Myers, N., Mittermeier, R. A., Mittermeier, C. G., da Fonseca, G. A. B., & Kent, J. (2000). Biodiversity hotspots for conservation priorities. Nature, 403, 853-858. https://doi.org/10.1038/35002501
Nilsson, L. A. (1988). The evolution of flowers with deep corolla tubes. Nature, 334, 147-149. https://doi.org/10.1038/334147a0
Nuismer, S. L. L., Gomulkiewicz, R., & Ridenhour, B. J. J. (2010). When is correlation coevolution? The American Naturalist, 175(5), 525-537. https://doi.org/10.1086/651591
Oksanen, J., Guillaume Blanchet, F., Friendly, M., Kindt, R., Legendre, P., McGlinn, D., … Wagner, H. (2017). vegan: Community ecology package. R package version 2.4-3. Retrieved from https://cran.r-project.org/package=vegan
Olesen, J. M., Bascompte, J., Dupont, Y. L., & Jordano, P. (2007). The modularity of pollination networks. Proceedings of the National Academy of Sciences of the United States of America, 104(50), 19891-19896. https://doi.org/10.1073/pnas.0706375104
Paradis, E., Claude, J., & Strimmer, K. (2004). APE: Analyses of phylogenetics and evolution in R language. Bioinformatics, 20(2), 289-290. https://doi.org/10.1093/bioinformatics/btg412
Pauw, A. (2006). Floral syndromes accurately predict pollination by a specialized oil-collecting bee (Rediviva peringueyi, Melittidae) in a guild of South African orchids (Coryciinae). American Journal of Botany, 93(6), 917-926. https://doi.org/10.3732/ajb.93.6.917
Pauw, A., Kahnt, B., Kuhlmann, M., Michez, D., Montgomery, G. A., Murray, E., & Danforth, B. N. (2017). Long-legged bees make adaptive leaps: Linking adaptation to coevolution in a plant-pollinator network. Proceedings of the Royal Society B: Biological Sciences, 284(1862), https://doi.org/10.1098/rspb.2017.1707
Pauw, A., Stofberg, J., & Waterman, R. J. (2009). Flies and flowers in Darwin's race. Evolution, 63, 268-279. https://doi.org/10.1111/j.1558-5646.2008.00547.x
Pérez-Escobar, O. A., Balbuena, J. A., & Gottschling, M. (2016). Rumbling orchids: How to assess divergent evolution between chloroplast endosymbionts and the nuclear host. Systematic Biology, 65(1), 51-65. https://doi.org/10.1093/sysbio/syv070
Peter, C. I., & Johnson, S. D. (2014). A pollinator shift explains floral divergence in an orchid species complex in South Africa. Annals of Botany, 113, 277-288. https://doi.org/10.1093/aob/mct216
Revell, L. J. (2012). phytools: An R package for phylogenetic comparative biology (and other things). Methods in Ecology and Evolution, 3, 217-223. https://doi.org/10.1111/j.2041-210X.2011.00169.x
Russo, L., Miller, A. D., Tooker, J., Bjornstad, O. N., & Shea, K. (2018). Quantitative evolutionary patterns in bipartite networks: Vicariance, phylogenetic tracking or diffuse co-evolution? Methods in Ecology and Evolution, 9(3), 761-772. https://doi.org/10.1111/2041-210X.12914
Rymer, P. D., Johnson, S. D., & Savolainen, V. (2010). Pollinator behaviour and plant speciation: Can assortative mating and disruptive selection maintain distinct floral morphs in sympatry? New Phytologist, 188, 426-436. https://doi.org/10.1111/j.1469-8137.2010.03438.x
Schliep, K. P. (2011). phangorn: Phylogenetic analysis in R. Bioinformatics, 27(4), 592-593. https://doi.org/10.1093/bioinformatics/btq706
Segraves, K. A. (2010). Branching out with coevolutionary trees. Evolution: Education and Outreach, 3(1), 62-70. https://doi.org/10.1007/s12052-009-0199-z
Springer, T. J., Van der Niet, T., & Cron, G. V. (2018). Pollinators as likely drivers of diversification in the Drakensberg Mountain Region endemic genus Glumicalyx (Scrophulariaceae). South African Journal of Botany, 115, 310. https://doi.org/10.1016/j.sajb.2018.02.125
Stebbins, G. L. (1970). Adaptive radiation of reproductive characteristics in angiosperms, I: Pollination mechanisms. Annual Review of Ecology and Systematics, 1(1), 307-326. https://doi.org/10.1146/annurev.es.01.110170.001515
Steiner, K. E. (2011). A new endemic Diascia (Scrophulariaceae) threatened by proposed tungsten mining in the Western Cape. South African Journal of Botany, 77(3), 777-781. https://doi.org/10.1016/j.sajb.2011.04.001
Steiner, K. E. (2012). Scrophulariaceae, Diascia. In J. Manning, & P. Goldblatt (Eds.), Plants of the Greater Cape Floristic Region 1: The Core Cape flora (Strelitzia 29). Pretoria, South Africa: South African National Biodiversity Institute.
Steiner, K. E. (2013). Scrophulariaceae, Diascia. In D. A. Snijman (Ed.), Plants of the Greater Cape Floristic Region, Vol. 2: The Extra Cape flora (Strelitzia 30). Pretoria, South Africa: South African National Biodiversity Institute.
Steiner, K. E., & Whitehead, V. B. (1988). The association between oil-producing flowers and oil-collecting bees in the Drakensberg of Southern Africa. Monographies Systematics Botany Missouri Botanical Garden, 25, 259-277.
Steiner, K. E., & Whitehead, V. B. (1990). Pollinator adaptation to oil-secreting flowers-Rediviva and Diascia. Evolution, 44(6), 1701-1707. https://doi.org/10.2307/2409348
Steiner, K. E., & Whitehead, V. B. (1991). Oil flowers and oil bees: Further evidence for pollinator adaptation. Evolution, 45(6), 1493-1501. https://doi.org/10.2307/2409895
Suchan, T., & Alvarez, N. (2015). Fifty years after Ehrlich and Raven, is there support for plant-insect coevolution as a major driver of species diversification? Entomologia Experimentalis et Applicata, 157(1), 98-112. https://doi.org/10.1111/eea.12348
Thompson, J. N. (1982). Interaction and coevolution. Chicago, IL: University of Chicago Press.
Thompson, J. N. (2005). The geographic mosaic of coevolution. Chicago, IL: University Chicago Press.
Valente, L. M., Manning, J. C., Goldblatt, P., & Vargas, P. (2012). Did pollination shifts drive diversification in Southern African Gladiolus? Evaluating the model of pollinator-driven speciation. The American Naturalist, 180(1), 83-98. https://doi.org/10.1086/666003
Valente, L. M., Reeves, G., Schnitzler, J., Mason, I. P., Fay, M. F., Rebelo, T. G., … Barraclough, T. G. (2010). Diversification of the African genus Protea (Proteaceae) in the Cape biodiversity hotspot and beyond: Equal rates in different biomes. Evolution, 64(3), 745-760. https://doi.org/10.1111/j.1558-5646.2009.00856.x
van der Niet, T., & Johnson, S. D. (2012). Phylogenetic evidence for pollinator-driven diversification of angiosperms. Trends in Ecology & Evolution, 27(6), 353-361. https://doi.org/10.1016/j.tree.2012.02.002
van der Niet, T., Peakall, R., & Johnson, S. D. (2014). Pollinator-driven ecological speciation in plants: New evidence and future perspectives. Annals of Botany, 113(2), 199-212. https://doi.org/10.1093/aob/mct290
van der Niet, T., Pirie, M. D., Shuttleworth, A., Johnson, S. D., & Midgley, J. J. (2014). Do pollinator distributions underlie the evolution of pollination ecotypes in the Cape shrub Erica plukenetii? Annals of Botany, 113(2), 301-315. https://doi.org/10.1093/aob/mct193
Vázquez, D. P., & Aizen, M. A. (2004). Asymmetric specialization: a pervasive feature of plant-pollinator interactions. Ecology, 85(5), 1251-1257.
Vázquez, D. P., Melián, C. J., Williams, N. M., Blüthgen, N., Krasnov, B. R., & Poulin, R. (2007). Species abundance and asymmetric interaction strength in ecological networks. Oikos, 116(7), 1120-1127.
Vogel, S., & Michener, C. D. (1985). Long bee legs and oil-producing floral spurs, and a new Rediviva (Hymenoptera, Melittidae; Scrophulariaceae). Journal of the Kansas Entomological Society, 58, 359-364.
Weiblen, G. D., & Bush, G. L. (2002). Speciation in fig pollinators and parasites. Molecular Ecology, 11(8), 1573-1578. https://doi.org/10.1046/j.1365-294X.2002.01529.x
Whitehead, V. B., & Steiner, K. E. (1985). Oil-collecting bees in South Africa. African Journal of Wildlife, 39, 144-147.
Whitehead, V. B., & Steiner, K. E. (2001). Oil-collecting bees of the winter rainfall area of South Africa (Melittidae, Rediviva). Annals of the South African Museum, 108, 143-277.
Whitehead, V. B., Steiner, K. E., & Eardley, C. D. (2008). Oil collecting bees mostly of the summer rainfall area of southern Africa (Hymenoptera: Melittidae: Rediviva). Journal of the Kansas Entomological Society, 81(2), 122-141. https://doi.org/10.2317/JKES-703.12.1
Whittall, J. B., & Hodges, S. A. (2007). Pollinator shifts drive increasingly long nectar spurs in columbine flowers. Nature, 447(7145), 706-709. https://doi.org/10.1038/nature05857
Yoder, J. B., & Nuismer, S. L. (2010). When does coevolution promote diversification? The American Naturalist, 176(6), 802-817. https://doi.org/10.1086/657048
Yu, G., Smith, D., Zhu, H., Guan, Y., & Lam, T.-T.-Y. (2017). ggtree: An R package for visualization and annotation of phylogenetic trees with their covariates and other associated data. Methods in Ecology and Evolution, 8(1), 28-36.

Auteurs

Belinda Kahnt (B)

General Zoology, Institute of Biology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany.

Wesley N Hattingh (WN)

School of Animal, Plant and Environmental Sciences, University of the Witwatersrand, Braamfontein, South Africa.

Panagiotis Theodorou (P)

General Zoology, Institute of Biology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany.

Nicolas Wieseke (N)

Institute for Informatics, University of Leipzig, Leipzig, Germany.

Michael Kuhlmann (M)

Zoological Museum, Kiel University, Kiel, Germany.
Department of Life Sciences, Natural History Museum, London, UK.

Kelsey L Glennon (KL)

School of Animal, Plant and Environmental Sciences, University of the Witwatersrand, Braamfontein, South Africa.

Timotheüs van der Niet (T)

School of Life Sciences, Centre for Functional Biodiversity, University of Kwazulu-Natal, Pietermaritzburg, South Africa.

Robert Paxton (R)

General Zoology, Institute of Biology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany.
German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany.

Glynis V Cron (GV)

School of Animal, Plant and Environmental Sciences, University of the Witwatersrand, Braamfontein, South Africa.

Articles similaires

Genome, Chloroplast Phylogeny Genetic Markers Base Composition High-Throughput Nucleotide Sequencing
Robotic Surgical Procedures Animals Humans Telemedicine Models, Animal

Odour generalisation and detection dog training.

Lyn Caldicott, Thomas W Pike, Helen E Zulch et al.
1.00
Animals Odorants Dogs Generalization, Psychological Smell
Animals TOR Serine-Threonine Kinases Colorectal Neoplasms Colitis Mice

Classifications MeSH