The Protective Effects of Carbon Monoxide Against Hepatic Warm Ischemia-Reperfusion Injury in MHC-Inbred Miniature Swine.

Carbon monoxide HMGB1 Ischemia–reperfusion injury Large animal model Liver Pro-inflammatory cytokines

Journal

Journal of gastrointestinal surgery : official journal of the Society for Surgery of the Alimentary Tract
ISSN: 1873-4626
Titre abrégé: J Gastrointest Surg
Pays: United States
ID NLM: 9706084

Informations de publication

Date de publication:
05 2020
Historique:
received: 29 01 2019
accepted: 21 05 2019
pubmed: 28 6 2019
medline: 15 4 2021
entrez: 28 6 2019
Statut: ppublish

Résumé

The development of treatment strategies to protect against ischemia-reperfusion injury (IRI) to livers is important not only for liver surgeries but also in regard to increasing the utilization of livers from marginal donors. In this study, we examined whether inhalational carbon monoxide (CO) therapy reduced IRI after a 45-min (min) warm ischemia (WI) in a miniature swine model. Six CLAWN miniature swine underwent a 45-min hepatic WI induced by clamping the portal vein and proper hepatic artery. Three animals were subjected to control conditions while the remaining three were treated with CO inhalation for a total of 345-min, including 120-min after reperfusion to maintain a concentration of CO-Hb under 15% (CO-treated group). IRI of the livers was evaluated by liver function tests, serum pro-inflammatory cytokines, and liver biopsies. All controls had statistically significant increased levels of liver enzymes compared to the CO-treated group (p < 0.05). In controls, liver biopsies at 2 h after reperfusion showed marked histological changes including diffuse hemorrhage, congestion, necrosis, vacuolization, and neutrophil infiltration with apoptosis. In contrast, the CO-treated group showed less obvious or only minimal histological changes. Furthermore, increases in high-mobility group box 1, TNF-α, and IL-6 in sera that were induced by IRI in controls were markedly inhibited by the CO treatment. We demonstrated that low-dose CO inhalation reduces hepatic warm IRI, potentially through downregulation of pro-inflammatory mediators and activation of anti-apoptotic pathways. To our knowledge, this is the first report demonstrating CO inhalation attenuated hepatic IRI following WI in a large animal model.

Sections du résumé

BACKGROUND
The development of treatment strategies to protect against ischemia-reperfusion injury (IRI) to livers is important not only for liver surgeries but also in regard to increasing the utilization of livers from marginal donors. In this study, we examined whether inhalational carbon monoxide (CO) therapy reduced IRI after a 45-min (min) warm ischemia (WI) in a miniature swine model.
MATERIALS AND METHODS
Six CLAWN miniature swine underwent a 45-min hepatic WI induced by clamping the portal vein and proper hepatic artery. Three animals were subjected to control conditions while the remaining three were treated with CO inhalation for a total of 345-min, including 120-min after reperfusion to maintain a concentration of CO-Hb under 15% (CO-treated group). IRI of the livers was evaluated by liver function tests, serum pro-inflammatory cytokines, and liver biopsies.
RESULTS
All controls had statistically significant increased levels of liver enzymes compared to the CO-treated group (p < 0.05). In controls, liver biopsies at 2 h after reperfusion showed marked histological changes including diffuse hemorrhage, congestion, necrosis, vacuolization, and neutrophil infiltration with apoptosis. In contrast, the CO-treated group showed less obvious or only minimal histological changes. Furthermore, increases in high-mobility group box 1, TNF-α, and IL-6 in sera that were induced by IRI in controls were markedly inhibited by the CO treatment.
CONCLUSION
We demonstrated that low-dose CO inhalation reduces hepatic warm IRI, potentially through downregulation of pro-inflammatory mediators and activation of anti-apoptotic pathways. To our knowledge, this is the first report demonstrating CO inhalation attenuated hepatic IRI following WI in a large animal model.

Identifiants

pubmed: 31243716
doi: 10.1007/s11605-019-04283-0
pii: 10.1007/s11605-019-04283-0
doi:

Substances chimiques

HMGB1 Protein 0
Carbon Monoxide 7U1EE4V452

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

974-982

Références

Moers C, Leuvenink HG, Ploeg RJ. Non-heart beating organ donation: overview and future perspectives. Transpl Int. 2007;20(7):567–75. doi: https://doi.org/10.1111/j.1432-2277.2007.00455.x .
doi: 10.1111/j.1432-2277.2007.00455.x pubmed: 17263786
Morrissey PE, Monaco AP. Donation after circulatory death: current practices, ongoing challenges, and potential improvements. Transplantation. 2014;97(3):258–64. doi: https://doi.org/10.1097/01.TP.0000437178.48174.db .
doi: 10.1097/01.TP.0000437178.48174.db pubmed: 24492420
Reich DJ, Mulligan DC, Abt PL, Pruett TL, Abecassis MM, D’Alessandro A et al. ASTS recommended practice guidelines for controlled donation after cardiac death organ procurement and transplantation. Am J Transplant. 2009;9(9):2004–11. doi: https://doi.org/10.1111/j.1600-6143.2009.02739.x .
doi: 10.1111/j.1600-6143.2009.02739.x pubmed: 19624569
Jaeschke H. Molecular mechanisms of hepatic ischemia-reperfusion injury and preconditioning. American journal of physiology Gastrointestinal and liver physiology. 2003;284(1):G15–26. doi: https://doi.org/10.1152/ajpgi.00342.2002 .
doi: 10.1152/ajpgi.00342.2002 pubmed: 12488232
Jaeschke H, Farhood A, Smith CW. Neutrophils contribute to ischemia/reperfusion injury in rat liver in vivo. FASEB J. 1990;4(15):3355–9.
doi: 10.1096/fasebj.4.15.2253850
Lentsch AB, Kato A, Yoshidome H, McMasters KM, Edwards MJ. Inflammatory mechanisms and therapeutic strategies for warm hepatic ischemia/reperfusion injury. Hepatology. 2000;32(2):169–73. doi: https://doi.org/10.1053/jhep.2000.9323 .
doi: 10.1053/jhep.2000.9323 pubmed: 10915720
Okajima K, Harada N, Kushimoto S, Uchiba M. Role of microthrombus formation in the development of ischemia/reperfusion-induced liver injury in rats. Thromb Haemost. 2002;88(3):473–80.
pubmed: 12353078
Selzner N, Rudiger H, Graf R, Clavien PA. Protective strategies against ischemic injury of the liver. Gastroenterology. 2003;125(3):917–36.
doi: 10.1016/S0016-5085(03)01048-5
Gracia-Sancho J, Casillas-Ramirez A, Peralta C. Molecular pathways in protecting the liver from ischaemia/reperfusion injury: a 2015 update. Clin Sci (Lond). 2015;129(4):345–62. doi: https://doi.org/10.1042/CS20150223 .
doi: 10.1042/CS20150223 pubmed: 26014222
Bauer I, Pannen BH. Bench-to-bedside review: Carbon monoxide--from mitochondrial poisoning to therapeutic use. Crit Care. 2009;13(4):220. doi: https://doi.org/10.1186/cc7887 .
doi: 10.1186/cc7887 pubmed: 19691819 pmcid: 2750131
Ryter SW, Choi AM. Targeting heme oxygenase-1 and carbon monoxide for therapeutic modulation of inflammation. Transl Res. 2016;167(1):7–34. doi: https://doi.org/10.1016/j.trsl.2015.06.011 .
doi: 10.1016/j.trsl.2015.06.011 pubmed: 26166253
Sahara H, Shimizu A, Setoyama K, Okumi M, Oku M, Samelson-Jones E et al. Carbon monoxide reduces pulmonary ischemia-reperfusion injury in miniature swine. J Thorac Cardiovasc Surg. 2010;139(6):1594–601. doi: https://doi.org/10.1016/j.jtcvs.2009.09.016 .
doi: 10.1016/j.jtcvs.2009.09.016 pubmed: 19909986
Sahara H, Shimizu A, Setoyama K, Oku M, Okumi M, Nishimura H et al. Beneficial effects of perioperative low-dose inhaled carbon monoxide on pulmonary allograft survival in MHC-inbred CLAWN miniature swine. Transplantation. 2010;90(12):1336–43. doi: https://doi.org/10.1097/TP.0b013e3181ff8730 .
doi: 10.1097/TP.0b013e3181ff8730 pubmed: 21076382
Ando A, Kawata H, Murakami T, Shigenari A, Shiina T, Sada M et al. cDNA cloning and genetic polymorphism of the swine major histocompatibility complex (SLA) class II DMA gene. Anim Genet. 2001;32(2):73–7.
doi: 10.1046/j.1365-2052.2001.00733.x
Ando A, Ota M, Sada M, Katsuyama Y, Goto R, Shigenari A et al. Rapid assignment of the swine major histocompatibility complex (SLA) class I and II genotypes in Clawn miniature swine using PCR-SSP and PCR-RFLP methods. Xenotransplantation. 2005;12(2):121–6. doi: https://doi.org/10.1111/j.1399-3089.2005.00204.x .
doi: 10.1111/j.1399-3089.2005.00204.x pubmed: 15693842
Oku M, Okumi M, Shimizu A, Sahara H, Setoyama K, Nishimura H et al. Hepatocyte growth factor sustains T regulatory cells and prolongs the survival of kidney allografts in major histocompatibility complex-inbred CLAWN-miniature swine. Transplantation. 2012;93(2):148–55. doi: https://doi.org/10.1097/TP.0b013e31823be83f .
doi: 10.1097/TP.0b013e31823be83f pubmed: 22158517
Suzuki S, Toledo-Pereyra LH, Rodriguez FJ, Cejalvo D. Neutrophil infiltration as an important factor in liver ischemia and reperfusion injury. Modulating effects of FK506 and cyclosporine. Transplantation. 1993;55(6):1265–72.
doi: 10.1097/00007890-199306000-00011
Zhai Y, Petrowsky H, Hong JC, Busuttil RW, Kupiec-Weglinski JW. Ischaemia-reperfusion injury in liver transplantation--from bench to bedside. Nature reviews Gastroenterology & hepatology. 2013;10(2):79–89. doi: https://doi.org/10.1038/nrgastro.2012.225 .
doi: 10.1038/nrgastro.2012.225
Monbaliu D, Vekemans K, Hoekstra H, Vaahtera L, Libbrecht L, Derveaux K et al. Multifactorial biological modulation of warm ischemia reperfusion injury in liver transplantation from non-heart-beating donors eliminates primary nonfunction and reduces bile salt toxicity. Ann Surg. 2009;250(5):808–17. doi: https://doi.org/10.1097/SLA.0b013e3181bdd787 .
doi: 10.1097/SLA.0b013e3181bdd787 pubmed: 19826248
Wertheim JA, Petrowsky H, Saab S, Kupiec-Weglinski JW, Busuttil RW. Major challenges limiting liver transplantation in the United States. Am J Transplant. 2011;11(9):1773–84. doi: https://doi.org/10.1111/j.1600-6143.2011.03587.x .
doi: 10.1111/j.1600-6143.2011.03587.x pubmed: 21672146 pmcid: 3166424
Mendes-Braz M, Elias-Miro M, Jimenez-Castro MB, Casillas-Ramirez A, Ramalho FS, Peralta C. The current state of knowledge of hepatic ischemia-reperfusion injury based on its study in experimental models. J Biomed Biotechnol. 2012;2012:298657. doi: https://doi.org/10.1155/2012/298657 .
doi: 10.1155/2012/298657 pubmed: 22649277 pmcid: 3357607
Bachmann S, Bechstein WO, Keck H, Lemmens HP, Brandes N, John AK et al. Pilot study: Carolina Rinse Solution improves graft function after orthotopic liver transplantation in humans. Transplant Proc. 1997;29(1–2):390–2.
doi: 10.1016/S0041-1345(96)00132-7
Dutkowski P, de Rougemont O, Clavien PA. Machine perfusion for ‘marginal’ liver grafts. Am J Transplant. 2008;8(5):917–24. doi: https://doi.org/10.1111/j.1600-6143.2008.02165.x .
doi: 10.1111/j.1600-6143.2008.02165.x pubmed: 18416733
Audet M, Alexandre E, Mustun A, David P, Chenard-Neu MP, Tiollier J et al. Comparative evaluation of Celsior solution versus Viaspan in a pig liver transplantation model. Transplantation. 2001;71(12):1731–5.
doi: 10.1097/00007890-200106270-00005
Monbaliu D, Crabbe T, Roskams T, Fevery J, Verwaest C, Pirenne J. Livers from non-heart-beating donors tolerate short periods of warm ischemia. Transplantation. 2005;79(9):1226–30.
doi: 10.1097/01.TP.0000153508.71684.99
Tenhunen R, Marver HS, Schmid R. The enzymatic conversion of heme to bilirubin by microsomal heme oxygenase. Proc Natl Acad Sci U S A. 1968;61(2):748–55.
doi: 10.1073/pnas.61.2.748
Baranano DE, Rao M, Ferris CD, Snyder SH. Biliverdin reductase: a major physiologic cytoprotectant. Proc Natl Acad Sci U S A. 2002;99(25):16093–8. doi: https://doi.org/10.1073/pnas.252626999 .
doi: 10.1073/pnas.252626999 pubmed: 12456881 pmcid: 138570
Ozaki KS, Kimura S, Murase N. Use of carbon monoxide in minimizing ischemia/reperfusion injury in transplantation. Transplantation reviews (Orlando, Fla). 2012;26(2):125–39. doi: https://doi.org/10.1016/j.trre.2011.01.004 .
doi: 10.1016/j.trre.2011.01.004
Amersi F, Shen XD, Anselmo D, Melinek J, Iyer S, Southard DJ et al. Ex vivo exposure to carbon monoxide prevents hepatic ischemia/reperfusion injury through p38 MAP kinase pathway. Hepatology. 2002;35(4):815–23. doi: https://doi.org/10.1053/jhep.2002.32467 .
doi: 10.1053/jhep.2002.32467 pubmed: 11915027
Kaizu T, Ikeda A, Nakao A, Tsung A, Toyokawa H, Ueki S et al. Protection of transplant-induced hepatic ischemia/reperfusion injury with carbon monoxide via MEK/ERK1/2 pathway downregulation. American journal of physiology Gastrointestinal and liver physiology. 2008;294(1):G236–44. doi: https://doi.org/10.1152/ajpgi.00144.2007 .
doi: 10.1152/ajpgi.00144.2007 pubmed: 18006605
Tomiyama K, Ikeda A, Ueki S, Nakao A, Stolz DB, Koike Y et al. Inhibition of Kupffer cell-mediated early proinflammatory response with carbon monoxide in transplant-induced hepatic ischemia/reperfusion injury in rats. Hepatology. 2008;48(5):1608–20. doi: https://doi.org/10.1002/hep.22482 .
doi: 10.1002/hep.22482 pubmed: 18972563
Ikeda A, Ueki S, Nakao A, Tomiyama K, Ross MA, Stolz DB et al. Liver graft exposure to carbon monoxide during cold storage protects sinusoidal endothelial cells and ameliorates reperfusion injury in rats. Liver Transpl. 2009;15(11):1458–68. doi: https://doi.org/10.1002/lt.21918 .
doi: 10.1002/lt.21918 pubmed: 19877256 pmcid: 2930486
Liu A, Fang H, Wei W, Dirsch O, Dahmen U. Ischemic preconditioning protects against liver ischemia/reperfusion injury via heme oxygenase-1-mediated autophagy. Crit Care Med. 2014;42(12):e762–71. doi: https://doi.org/10.1097/CCM.0000000000000659 .
doi: 10.1097/CCM.0000000000000659 pubmed: 25402296
Wei Y, Chen P, de Bruyn M, Zhang W, Bremer E, Helfrich W. Carbon monoxide-releasing molecule-2 (CORM-2) attenuates acute hepatic ischemia reperfusion injury in rats. BMC Gastroenterol. 2010;10:42. doi: https://doi.org/10.1186/1471-230X-10-42 .
doi: 10.1186/1471-230X-10-42 pubmed: 20444253 pmcid: 2873601
Kim HJ, Joe Y, Kong JS, Jeong SO, Cho GJ, Ryter SW et al. Carbon monoxide protects against hepatic ischemia/reperfusion injury via ROS-dependent Akt signaling and inhibition of glycogen synthase kinase 3beta. Oxid Med Cell Longev. 2013;2013:306421. doi: https://doi.org/10.1155/2013/306421 .
doi: 10.1155/2013/306421 pubmed: 24454979 pmcid: 3880761
Rosas IO, Goldberg HJ, Collard HR, El-Chemaly S, Flaherty K, Hunninghake GM et al. A Phase II Clinical Trial of Low-Dose Inhaled Carbon Monoxide in Idiopathic Pulmonary Fibrosis. Chest. 2018;153(1):94–104. doi: https://doi.org/10.1016/j.chest.2017.09.052 .
doi: 10.1016/j.chest.2017.09.052 pubmed: 29100885
Abu-Amara M, Yang SY, Tapuria N, Fuller B, Davidson B, Seifalian A. Liver ischemia/reperfusion injury: processes in inflammatory networks--a review. Liver Transpl. 2010;16(9):1016–32. doi: https://doi.org/10.1002/lt.22117 .
doi: 10.1002/lt.22117 pubmed: 20818739
Lee LY, Kaizu T, Toyokawa H, Zhang M, Ross M, Stolz DB et al. Carbon monoxide induces hypothermia tolerance in Kupffer cells and attenuates liver ischemia/reperfusion injury in rats. Liver Transpl. 2011;17(12):1457–66. doi: https://doi.org/10.1002/lt.22415 .
doi: 10.1002/lt.22415 pubmed: 21850691 pmcid: 3222745
Otterbein LE, Bach FH, Alam J, Soares M, Tao Lu H, Wysk M et al. Carbon monoxide has anti-inflammatory effects involving the mitogen-activated protein kinase pathway. Nat Med. 2000;6(4):422–8. doi: https://doi.org/10.1038/74680 .
doi: 10.1038/74680 pubmed: 10742149
Kim HJ, Joe Y, Yu JK, Chen Y, Jeong SO, Mani N et al. Carbon monoxide protects against hepatic ischemia/reperfusion injury by modulating the miR-34a/SIRT1 pathway. Biochim Biophys Acta. 2015;1852(7):1550–9. doi: https://doi.org/10.1016/j.bbadis.2015.04.017 .
doi: 10.1016/j.bbadis.2015.04.017 pubmed: 25916635
Tsung A, Sahai R, Tanaka H, Nakao A, Fink MP, Lotze MT et al. The nuclear factor HMGB1 mediates hepatic injury after murine liver ischemia-reperfusion. J Exp Med. 2005;201(7):1135–43. doi: https://doi.org/10.1084/jem.20042614 .
doi: 10.1084/jem.20042614 pubmed: 15795240 pmcid: 2213120
Wu H, Ma J, Wang P, Corpuz TM, Panchapakesan U, Wyburn KR et al. HMGB1 contributes to kidney ischemia reperfusion injury. J Am Soc Nephrol. 2010;21(11):1878–90. doi: https://doi.org/10.1681/ASN.2009101048 .
doi: 10.1681/ASN.2009101048 pubmed: 20847143 pmcid: 3014003
Li J, Gong Q, Zhong S, Wang L, Guo H, Xiang Y et al. Neutralization of the extracellular HMGB1 released by ischaemic damaged renal cells protects against renal ischaemia-reperfusion injury. Nephrol Dial Transplant. 2011;26(2):469–78. doi: https://doi.org/10.1093/ndt/gfq466 .
doi: 10.1093/ndt/gfq466 pubmed: 20679140
Miura K, Sahara H, Sekijima M, Kawai A, Waki S, Nishimura H et al. Protective effect of neutralization of the extracellular high-mobility group box 1 on renal ischemia-reperfusion injury in miniature swine. Transplantation. 2014;98(9):937–43. doi: https://doi.org/10.1097/TP.0000000000000358 .
doi: 10.1097/TP.0000000000000358 pubmed: 25136847

Auteurs

Takahiro Murokawa (T)

Center for Advanced Biomedical Science and Swine Research, Division of Organ Replacement and Xenotransplantation Surgery M, Kagoshima University, 8-35-1, Sakuragaoka, Kagoshima City, Kagoshima, 890-8520, Japan.

Hisashi Sahara (H)

Center for Advanced Biomedical Science and Swine Research, Division of Organ Replacement and Xenotransplantation Surgery M, Kagoshima University, 8-35-1, Sakuragaoka, Kagoshima City, Kagoshima, 890-8520, Japan. hssahara@gmail.com.

Mitsuhiro Sekijima (M)

Center for Advanced Biomedical Science and Swine Research, Division of Organ Replacement and Xenotransplantation Surgery M, Kagoshima University, 8-35-1, Sakuragaoka, Kagoshima City, Kagoshima, 890-8520, Japan.

Thomas Pomposelli (T)

Columbia Center for Translational Immunology, Department of Surgery, Columbia University Medical Center, New York, USA.

Takehiro Iwanaga (T)

Center for Advanced Biomedical Science and Swine Research, Division of Organ Replacement and Xenotransplantation Surgery M, Kagoshima University, 8-35-1, Sakuragaoka, Kagoshima City, Kagoshima, 890-8520, Japan.

Yurika Ichinari (Y)

Center for Advanced Biomedical Science and Swine Research, Division of Organ Replacement and Xenotransplantation Surgery M, Kagoshima University, 8-35-1, Sakuragaoka, Kagoshima City, Kagoshima, 890-8520, Japan.

Akira Shimizu (A)

Department of Analytic Human Pathology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan.

Kazuhiko Yamada (K)

Center for Advanced Biomedical Science and Swine Research, Division of Organ Replacement and Xenotransplantation Surgery M, Kagoshima University, 8-35-1, Sakuragaoka, Kagoshima City, Kagoshima, 890-8520, Japan.

Articles similaires

Robotic Surgical Procedures Animals Humans Telemedicine Models, Animal

Odour generalisation and detection dog training.

Lyn Caldicott, Thomas W Pike, Helen E Zulch et al.
1.00
Animals Odorants Dogs Generalization, Psychological Smell
Animals TOR Serine-Threonine Kinases Colorectal Neoplasms Colitis Mice
Animals Tail Swine Behavior, Animal Animal Husbandry

Classifications MeSH