[
Adult
Aged
Aged, 80 and over
Alzheimer Disease
/ diagnostic imaging
Animals
Brain
/ diagnostic imaging
Female
Fluorine Radioisotopes
/ administration & dosage
Humans
Kinetics
Macaca mulatta
Male
Mice
Mice, Inbred C57BL
Middle Aged
Neurofibrillary Tangles
/ metabolism
Positron-Emission Tomography
/ methods
Protein Binding
Radiopharmaceuticals
/ administration & dosage
Sensitivity and Specificity
tau Proteins
/ metabolism
Alzheimer’s disease
Kinetic modeling
Tau PET imaging
[18F]GTP1
Journal
European journal of nuclear medicine and molecular imaging
ISSN: 1619-7089
Titre abrégé: Eur J Nucl Med Mol Imaging
Pays: Germany
ID NLM: 101140988
Informations de publication
Date de publication:
Sep 2019
Sep 2019
Historique:
received:
20
11
2018
accepted:
11
06
2019
pubmed:
30
6
2019
medline:
15
9
2020
entrez:
30
6
2019
Statut:
ppublish
Résumé
Neurofibrillary tangles (NFTs), consisting of intracellular aggregates of the tau protein, are a pathological hallmark of Alzheimer's disease (AD). Here we report the identification and initial characterization of Genentech Tau Probe 1 ([ Autoradiography using human brain tissues from AD donors and protein binding panels were used to determine [ [ [
Identifiants
pubmed: 31254035
doi: 10.1007/s00259-019-04399-0
pii: 10.1007/s00259-019-04399-0
doi:
Substances chimiques
(18F)GTP1
0
Fluorine Radioisotopes
0
Radiopharmaceuticals
0
tau Proteins
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
2077-2089Références
Jack CR Jr, Wiste HJ, Vemuri P, Weigand SD, Senjem ML, Zeng G, et al. Brain beta-amyloid measures and magnetic resonance imaging atrophy both predict time-to-progression from mild cognitive impairment to Alzheimer's disease. Brain. 2010;133(11):3336–48. https://doi.org/10.1093/brain/awq277 .
doi: 10.1093/brain/awq277
pubmed: 20935035
pmcid: 2965425
Bateman RJ, Xiong C, Benzinger TL, Fagan AM, Goate A, Fox NC, et al. Clinical and biomarker changes in dominantly inherited Alzheimer's disease. N Engl J Med. 2012;367(9):795–804. https://doi.org/10.1056/NEJMoa1202753 .
doi: 10.1056/NEJMoa1202753
pubmed: 22784036
pmcid: 3474597
Chien DT, Bahri S, Szardenings AK, Walsh JC, Mu F, Su MY, et al. Early clinical PET imaging results with the novel PHF-tau radioligand [F-18]-T807. Journal of Alzheimer's disease: JAD. 2013;34(2):457–68. https://doi.org/10.3233/JAD-122059 .
doi: 10.3233/JAD-122059
pubmed: 23234879
Chien DT, Szardenings AK, Bahri S, Walsh JC, Mu F, Xia C, et al. Early clinical PET imaging results with the novel PHF-tau radioligand [F18]-T808. Journal of Alzheimer's disease: JAD. 2014;38(1):171–84. https://doi.org/10.3233/JAD-130098 .
doi: 10.3233/JAD-130098
pubmed: 23948934
Maruyama M, Shimada H, Suhara T, Shinotoh H, Ji B, Maeda J, et al. Imaging of tau pathology in a tauopathy mouse model and in Alzheimer patients compared to normal controls. Neuron. 2013;79(6):1094–108. https://doi.org/10.1016/j.neuron.2013.07.037 .
doi: 10.1016/j.neuron.2013.07.037
pubmed: 24050400
Kimura Y, Endo H, Ichise M, Shimada H, Seki C, Ikoma Y, et al. A new method to quantify tau pathologies with (11)C-PBB3 PET using reference tissue voxels extracted from brain cortical gray matter. EJNMMI Res. 2016;6(1):24. https://doi.org/10.1186/s13550-016-0182-y .
doi: 10.1186/s13550-016-0182-y
pubmed: 26969002
pmcid: 4788664
Kimura Y, Ichise M, Ito H, Shimada H, Ikoma Y, Seki C, et al. PET quantification of tau pathology in human brain with 11C-PBB3. J Nucl Med. 2015;56(9):1359–65. https://doi.org/10.2967/jnumed.115.160127 .
doi: 10.2967/jnumed.115.160127
pubmed: 26182966
Declercq L, Rombouts F, Koole M, Fierens K, Marien J, Langlois X, et al. Preclinical evaluation of (18)F-JNJ64349311, a novel PET tracer for tau imaging. J Nucl Med. 2017;58(6):975–81. https://doi.org/10.2967/jnumed.116.185199 .
doi: 10.2967/jnumed.116.185199
pubmed: 28232614
Hostetler ED, Walji AM, Zeng Z, Miller P, Bennacef I, Salinas C, et al. Preclinical characterization of 18F-MK-6240, a promising PET tracer for in vivo quantification of human neurofibrillary tangles. J Nucl Med. 2016;57(10):1599–606. https://doi.org/10.2967/jnumed.115.171678 .
doi: 10.2967/jnumed.115.171678
pubmed: 27230925
Pascoal TA, Shin M, Kang MS, Chamoun M, Chartrand D, Mathotaarachchi S, et al. In vivo quantification of neurofibrillary tangles with [18F]MK-6240. Alzheimers Res Ther. 2018;10(1):74. https://doi.org/10.1186/s13195-018-0402-y .
doi: 10.1186/s13195-018-0402-y
pubmed: 30064520
pmcid: 6069775
Wong DF, Comley R, Kuwabara H, Rosenberg PB, Resnick SM, Ostrowitzki S, et al. First in-human PET study of 3 novel tau radiopharmaceuticals: [(11)C]RO6924963, [(11)C]RO6931643, and [(18)F]RO6958948. J Nucl Med. 2018. https://doi.org/10.2967/jnumed.118.209916.
Gant TG. Using deuterium in drug discovery: leaving the label in the drug. J Med Chem. 2013. https://doi.org/10.1021/jm4007998 .
Jahan M, Eriksson O, Johnstrom P, Korsgren O, Sundin A, Johansson L, et al. Decreased defluorination using the novel beta-cell imaging agent [18F]FE-DTBZ-d4 in pigs examined by PET. EJNMMI Res. 2011;1(1):33.
doi: 10.1186/2191-219X-1-33
pubmed: 22214308
pmcid: 3284452
Schou M, Halldin C, Sovago J, Pike VW, Hall H, Gulyas B, et al. PET evaluation of novel radiofluorinated reboxetine analogs as norepinephrine transporter probes in the monkey brain. Synapse. 2004;53(2):57–67. https://doi.org/10.1002/syn.20031 .
doi: 10.1002/syn.20031
pubmed: 15170818
Marik J, Tinianow JN, Ogasawara A, Liu N, Williams SP, Lyssikatos JP, et al. [18F]GTP1 - A tau-specific tracer for imaging taupathology in AD. 10th Human Amyloid Imaging; January 13–15, 2016; Miami, FL 2016. p. 49 (PE32).
Marik J, Lyssikatos JP, Williams SP, inventors; US Patent No. 10,076,581. Deuterated compounds and uses thereof. 2018 Sep. 18.
Choi SR, Golding G, Zhuang Z, Zhang W, Lim N, Hefti F, et al. Preclinical properties of 18F-AV-45: a PET agent for Abeta plaques in the brain. J Nucl Med. 2009;50(11):1887–94. https://doi.org/10.2967/jnumed.109.065284 .
doi: 10.2967/jnumed.109.065284
pubmed: 19837759
pmcid: 3065020
Innis RB, Cunningham VJ, Delforge J, Fujita M, Gjedde A, Gunn RN, et al. Consensus nomenclature for in vivo imaging of reversibly binding radioligands. J Cereb Blood Flow Metab. 2007;27(9):1533–9. https://doi.org/10.1038/sj.jcbfm.9600493 .
doi: 10.1038/sj.jcbfm.9600493
Logan J. Graphical analysis of PET data applied to reversible and irreversible tracers. Nucl Med Biol. 2000;27(7):661–70.
doi: 10.1016/S0969-8051(00)00137-2
pubmed: 11091109
Braak H, Braak E. Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol. 1991;82(4):239–59.
doi: 10.1007/BF00308809
pubmed: 1759558
Marquie M, Normandin MD, Vanderburg CR, Costantino IM, Bien EA, Rycyna LG, et al. Validating novel tau positron emission tomography tracer [F-18]-AV-1451 (T807) on postmortem brain tissue. Ann Neurol. 2015;78(5):787–800. https://doi.org/10.1002/ana.24517 .
doi: 10.1002/ana.24517
pubmed: 26344059
pmcid: 4900162
Lammertsma AA, Hume SP. Simplified reference tissue model for PET receptor studies. NeuroImage. 1996;4(3 Pt 1):153–8. https://doi.org/10.1006/nimg.1996.0066 .
doi: 10.1006/nimg.1996.0066
pubmed: 9345505
Hedges LV, Shymansky JA, Woodworth G. A practical guide to modern methods of meta-analysis. Washington, DC: National Science Teachers Association; 1989.
Scholl M, Lockhart SN, Schonhaut DR, O'Neil JP, Janabi M, Ossenkoppele R, et al. PET imaging of tau deposition in the aging human brain. Neuron. 2016;89(5):971–82. https://doi.org/10.1016/j.neuron.2016.01.028 .
doi: 10.1016/j.neuron.2016.01.028
pubmed: 26938442
pmcid: 4779187
Jack CR Jr, Wiste HJ, Weigand SD, Therneau TM, Lowe VJ, Knopman DS, et al. Defining imaging biomarker cut points for brain aging and Alzheimer's disease. Alzheimers Dement. 2017;13(3):205–16. https://doi.org/10.1016/j.jalz.2016.08.005 .
doi: 10.1016/j.jalz.2016.08.005
pubmed: 27697430
Landau SM, Breault C, Joshi AD, Pontecorvo M, Mathis CA, Jagust WJ, et al. Amyloid-beta imaging with Pittsburgh compound B and florbetapir: comparing radiotracers and quantification methods. J Nucl Med. 2013;54(1):70–7. https://doi.org/10.2967/jnumed.112.109009 .
doi: 10.2967/jnumed.112.109009
pubmed: 23166389
Ng KP, Pascoal TA, Mathotaarachchi S, Therriault J, Kang MS, Shin M, et al. Monoamine oxidase B inhibitor, selegiline, reduces (18)F-THK5351 uptake in the human brain. Alzheimers Res Ther. 2017;9(1):25. https://doi.org/10.1186/s13195-017-0253-y .
doi: 10.1186/s13195-017-0253-y
pubmed: 28359327
pmcid: 5374697
Wu Y, Carson RE. Noise reduction in the simplified reference tissue model for neuroreceptor functional imaging. J Cereb Blood Flow Metab. 2002;22(12):1440–52. https://doi.org/10.1097/01.WCB.0000033967.83623.34 .
doi: 10.1097/01.WCB.0000033967.83623.34
pubmed: 12468889
Teng E, Ward M, Manser PT, Sanabria-Bohorquez S, Ray RD, Wildsmith KR, et al. Cross-sectional associations between [18F]GTP1 tau PET and cognition in Alzheimer's disease. Neurobiol Aging. 2019. Accepted.
Leuzy A, Chiotis K, Lemoine L, Gillberg PG, Almkvist O, Rodriguez-Vieitez E, et al. Tau PET imaging in neurodegenerative tauopathies-still a challenge. Mol Psychiatry. 2019. https://doi.org/10.1038/s41380-018-0342-8 .
Gobbi LC, Knust H, Korner M, Honer M, Czech C, Belli S, et al. Identification of three novel radiotracers for imaging aggregated tau in Alzheimer's disease with positron emission tomography. J Med Chem. 2017;60(17):7350–70. https://doi.org/10.1021/acs.jmedchem.7b00632 .
doi: 10.1021/acs.jmedchem.7b00632
pubmed: 28654263
Barret O, Alagille D, Sanabria S, Comley RA, Weimer RM, Borroni E, et al. Kinetic modeling of the tau PET tracer (18)F-AV-1451 in human healthy volunteers and Alzheimer disease subjects. J Nucl Med. 2017;58(7):1124–31. https://doi.org/10.2967/jnumed.116.182881 .
doi: 10.2967/jnumed.116.182881
pubmed: 27908967
Shcherbinin S, Schwarz AJ, Joshi A, Navitsky M, Flitter M, Shankle WR, et al. Kinetics of the tau PET tracer 18F-AV-1451 (T807) in subjects with normal cognitive function, mild cognitive impairment, and Alzheimer disease. J Nucl Med. 2016;57(10):1535–42. https://doi.org/10.2967/jnumed.115.170027 .
doi: 10.2967/jnumed.115.170027
pubmed: 27151986