In vitro interactions of abiraterone, erythromycin, and CYP3A4: implications for drug-drug interactions.
abiraterone
cytochrome P450 3A4
drug-drug interactions
erythromycin
Journal
Fundamental & clinical pharmacology
ISSN: 1472-8206
Titre abrégé: Fundam Clin Pharmacol
Pays: England
ID NLM: 8710411
Informations de publication
Date de publication:
Feb 2020
Feb 2020
Historique:
received:
18
03
2019
revised:
12
06
2019
accepted:
04
07
2019
pubmed:
10
7
2019
medline:
24
10
2020
entrez:
10
7
2019
Statut:
ppublish
Résumé
Potential drug-drug interactions of the antitumor drug abiraterone and the macrolide antibiotic erythromycin were studied at the stage of cytochrome P450 3A4 (CYP3A4) biotransformation. Using differential spectroscopy, we have shown that abiraterone is a type II ligand of CYP3A4. The dependence of CYP3A4 spectral changes on the concentration of abiraterone is sigmoidal, which indicates cooperative interactions of CYP3A4 with abiraterone; these interactions were confirmed by molecular docking. The dissociation constant (K
Substances chimiques
Androstenes
0
Anti-Bacterial Agents
0
Antineoplastic Agents
0
Cytochrome P-450 CYP3A Inhibitors
0
Erythromycin
63937KV33D
Cytochrome P-450 CYP3A
EC 1.14.14.1
CYP3A4 protein, human
EC 1.14.14.55
abiraterone
G819A456D0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
120-130Subventions
Organisme : Russian Science Foundation
ID : 17-75-20250
Informations de copyright
© 2019 Société Française de Pharmacologie et de Thérapeutique.
Références
Ortiz de Montellano P.R. Substrate oxidation by cytochrome P450 enzymes, in: Ortiz de Montellano P.R. (Ed.), Cytochrome P450 structure, mechanism, and biochemistry, Ch. 4, Springer International Publishing, Switzerland, 2015, pp. 111-176.
Del Re M., Fogli S., Derosa L., et al. The role of drug-drug interactions in prostate cancer treatment: focus on abiraterone acetate/prednisone and enzalutamide. Cancer Treat. Rev. (2017) 55 71-82.
Guengerich F. Human cytochrome P450 enzymes, in: Ortiz de Montellano P. (Ed.), Cytochrome P450, Springer, Cham, 2015, pp. 523-785.
Gomez L., Kovac J.R., Lamb D.J. CYP17A1 inhibitors in castration-resistant prostate cancer. Steroids (2015) 95 80-87.
Acharya M., Gonzalez M., Mannens G., et al. A phase I, open-label, single-dose, mass balance study of 14C-labeled abiraterone acetate in healthy male subjects. Xenobiotica (2013) 43 379-389.
Deb S., Chin M.Y., Adomat H., Guns E.S. Abiraterone inhibits 1α,25-dihydroxyvitamin D3 metabolism by CYP3A4 in human liver and intestine in vitro. J. Steroid. Biochem. Mol. Biol. (2014) 144 50-58.
Goldberg T., Berrios-Colon E. Abiraterone (zytiga), a novel agent for the management of castration-resistant prostate cancer. P T. (2013) 38 23-26.
Monbaliu J., Gonzalez M., Bernard A., et al. In vitro and in vivo drug-drug interaction studies to assess the effect of abiraterone acetate, abiraterone, and metabolites of abiraterone on CYP2C8 activity. Drug Metab. Dispos. (2016) 44 1682-1691.
Chi K.N., Tolcher A., Lee P., et al. Effect of abiraterone acetate plus prednisone on the pharmacokinetics of dextromethorphan and theophylline in patients with metastatic castration-resistant prostate cancer. Cancer Chemother. Pharmacol. (2013) 71 237-244.
Attard G., Reid A.H.M., Auchus R.J., et al. Clinical and biochemical consequences of CYP17A1 inhibition with abiraterone given with and without exogenous glucocorticoids in castrate men with advanced prostate cancer. J. Clin. Endocrinol. Metab. (2012) 97 507-516.
Malikova J., Brixius-Anderko S., Udhane S.S., et al. CYP17A1 inhibitor abiraterone, an anti-prostate cancer drug, also inhibits the 21-hydroxylase activity of CYP21A2. J. Steroid Biochem. Mol. Biol. (2017) 174 192-200.
Yin L., Hu Q. CYP17 inhibitors-abiraterone, C17,20-lyase inhibitors and multi-targeting agents. Nat. Rev. Urol. (2014) 11 32-42.
Riley R.J., Howbrook D. In vitro analysis of the activity of the major human hepatic CYP enzyme (CYP3A4) using [N-methyl-14C]-erythromycin. J. Pharmacol. Toxicol. Methods (1997) 38 189-193.
Kamel A., Harriman S. Inhibition of cytochrome P450 enzymes and biochemical aspects of mechanism-based inactivation (MBI). Drug Discov. Today Technol. (2013) 10 e177-89.
Panicco P., Dodhia V.R., Fantuzzi A., Gilardi G. Enzyme-based amperometric platform to determine the polymorphic response in drug metabolism by cytochromes P450. Anal. Chem. (2011) 83 2179-2186.
Fantuzzi A., Mak L.H., Capria E., et al. A new standardized electrochemical array for drug metabolic profiling with human cytochromes P450. Anal. Chem. (2011) 83 3831-3839.
Schneider E., Clark D.S. Cytochrome P450 (CYP) enzymes and the development of CYP biosensors. Biosens. Bioelectron. (2013) 39 1-13.
Shumyantseva V.V., Kuzikov A.V., Masamrekh R.A., Bulko T.V., Archakov A.I. From electrochemistry to enzyme kinetics of cytochrome P450. Biosens. Bioelectro. (2018) 121 192-204.
Fantuzzi A., Capria E., Mak L.H., et al. An electrochemical microfluidic platform for human P450 drug metabolism profiling. Anal. Chem. (2010) 82 10222-10227.
Nash T. The colorimetric estimation of formaldehyde by means of the Hantzsch reaction. Biochem. J. (1953) 55 416-421.
Shumyantseva V.V., Makhova A.A., Bulko T.V., et al. Electrocatalytic cycle of P450 cytochromes: the protective and stimulating roles of antioxidants. RSC Adv. (2015) 5 71306-71313.
Sadeghi S.J., Ferrero S., Di Nardo G., Gilardi G. Drug-drug interactions and cooperative effects detected in electrochemically driven human cytochrome P450 3A4. Bioelectrochemistry (2012) 86 87-91.
Ekroos M., Sjögren T. Structural basis for ligand promiscuity in cytochrome P450 3A4. Proc. Natl Acad. Sci USA (2006) 103 13682-13687.
Morris G.M., Huey R., Lindstrom W., et al. AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J. Comput. Chem. (2009) 30 2785-2791.
Trott O., Olson A.J. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. (2010) 31 455-461.
Dmitriev A.V., Lagunin A.A., Karasev D.A., et al. Prediction of drug-drug interactions related to inhibition or induction of drug-metabolizing enzymes. Curr. Top Med. Chem. (2019) 19 319-336.
Hansten P.D., Horn J.R., Hazlet T.K. ORCA: OpeRational ClassificAtion of drug interactions. J. Am. Pharm. Assoc. (2001) 41 161-165.
Filimonov D.A., Poroikov V.V., Borodina Y.V., Gloriozova T.A. Chemical Similarity Assessment through multilevel neighborhoods of atoms: definition and comparison with the other descriptors. J. Chem. Inf. Comput. Sci. (1999) 39 666-670.
Filimonov D.A., Druzhilovskiy D.S., Lagunin A.A., et al. Computer-aided prediction of biological activity spectra for chemical compounds: opportunities and limitations. Biomed. Chem.: Res. Methods (2018) 1 e00004.
Filimonov D.A., Poroikov V.V.Probabilistic approach in activity prediction, in: Varnek A., Tropsha A. (Eds), Chemoinformatics approaches to virtual screening, RSC Publishing, Cambridge, 2008, pp. 182-216.
Sevrioukova F.I., Poulos L.T. Understanding the mechanism of cytochrome P450 3A4: recent advances and remaining problems. Dalton Trans. (2013) 42 3116-3126.
Zhang H., Gay S.C., Shah M., et al. Potent mechanism-based inactivation of cytochrome P450 2B4 by 9-ethynylphenanthrene: implications for allosteric modulation of cytochrome P450 catalysis. Biochemistry (2013) 52 355-364.
Pamela A.W., Jose C., Dijana M.V., Alison W., Hayley C.A., Philip J.D. Crystal structures of human cytochrome P450 3A4 bound to metyrapone and progesterone. Science (2004) 305 683-686.
Sevrioukova I.F., Poulos T.L. Anion-dependent stimulation of CYP3A4 monooxygenase. Biochemistry (2015) 54 4083-4096.
Shumyantseva V.V., Kuzikov A.V., Masamrekh R.A., Bulko T.V., Archakov A.I. From electrochemistry to enzyme kinetics of cytochrome P450. Biosens. Bioelectron. (2018) 121 192-204.
McConn D.J., Lin Y.S., Allen K., Kunze K.L., Thummel K.E. Differences in the inhibition of cytochromes P450 3A4 and 3A5 by metabolite-inhibitor complex-forming drugs. Drug Metab. Dispos. (2004) 32 1083-1091.
Mak P.J., Denisov I.G. Spectroscopic studies of the cytochrome P450 reaction mechanisms. Biochim. Biophys. Acta Proteins Proteom. (2018) 1866 178-204.
Kuzikov A.V., Masamrekh R.A., Archakov A.I., Shumyantseva V.V. Methods for determination of functional activity of cytochrome P450 Isoenzymes. Biochem. (Moscow), Suppl. Ser. B: Biomed. Chem. (2018) 12(3) 220-240.
Kunze K.L., Nelson W.L., Kharasch E.D., Thummel K.E., Isoherranen N. Stereochemical aspects of itraconazole metabolism in vitro and in vivo. Drug Metab. Dispos. (2006) 34 583-590.
Pearson J.T., Hill J.J., Swank J., Isoherranen N., Kunze K.L., Atkins W.M. Surface plasmon resonance analysis of antifungal azoles binding to CYP3A4 with kinetic resolution of multiple binding orientations. Biochemistry (2006) 45 6341-6353.
Tang W., Stearns R.A. Heterotropic cooperativity of cytochrome P450 3A4 and potential drug-drug interactions. Curr. Drug Metab. (2001) 2 185-198.
Atkins W.M. Implications of the allosteric kinetics of cytochrome P450s. Drug Discov. Today. (2004) 9 478-484.
Bren U., Fuchs J.E., Oostenbrink C. Cooperative binding of aflatoxin B1 by cytochrome P450 3A4: a computational study. Chem. Res. Toxicol. (2014) 27 2136-2147.