Changes in brain perfusion in successive arterial spin labeling MRI scans in neonates with hypoxic-ischemic encephalopathy.


Journal

NeuroImage. Clinical
ISSN: 2213-1582
Titre abrégé: Neuroimage Clin
Pays: Netherlands
ID NLM: 101597070

Informations de publication

Date de publication:
2019
Historique:
received: 25 10 2018
revised: 11 07 2019
accepted: 14 07 2019
pubmed: 31 7 2019
medline: 17 9 2020
entrez: 31 7 2019
Statut: ppublish

Résumé

The primary objective of this study was to evaluate changes in cerebral blood flow (CBF) using arterial spin labeling MRI between day 4 of life (DOL4) and day 11 of life (DOL11) in neonates with hypoxic-ischemic encephalopathy (HIE) treated with hypothermia. The secondary objectives were to compare CBF values between the different regions of interest (ROIs) and between infants with ischemic lesions on MRI and infants with normal MRI findings. We prospectively included all consecutive neonates with HIE admitted to the neonatal intensive care unit of our institution who were eligible for therapeutic hypothermia. Each neonate systematically underwent two MRI examinations as close as possible to day 4 (early MRI) and day 11 (late MRI) of life. A custom processing pipeline of morphological and perfusion imaging data adapted to neonates was developed to perform automated ROI analysis. Twenty-eight neonates were included in the study between April 2015 and December 2017. There were 16 boys and 12 girls. Statistical analysis was finally performed on 37 MRIs, 17 early MRIs and 20 late MRIs. Eleven neonates had both early and late MRIs of good quality available. Eight out of 17 neonates (47%) had an abnormal on late MRI as performed and 7/20 neonates (35%) had an abnormal late MRI. CBF values in the basal ganglia and thalami (BGT) and temporal lobes were significantly higher on DOL4 than on DOL11. There were no significant differences between DOL4 and DOL11 for the other ROIs. CBF values were significantly higher in the BGT vs. the cortical GM, on both DOL4 and DOL11. On DOL4, the CBF was significantly higher in the cortical GM, the BGT, and the frontal and parietal lobes in subjects with an abnormal MRI compared to those with a normal MRI. On DOL11, CBF values in each ROI were not significantly different between the normal MRI group and the abnormal MRI group, except for the temporal lobes. This article proposes an innovative processing pipeline for morphological and ASL data suited to neonates that enable automated segmentation to obtain CBF values over ROIs. We evaluate CBF on two successive scans within the first 15 days of life in the same subjects. ASL imaging in asphyxiated neonates seems more relevant when used relatively early, in the first days of life. The correlation of intra-subject changes in cerebral perfusion between early and late MRI with neurodevelopmental outcome warrants investigation in a larger cohort, to determine whether the CBF pattern change can provide prognostic information beyond that provided by visible structural abnormalities on conventional MRI.

Identifiants

pubmed: 31362150
pii: S2213-1582(19)30289-X
doi: 10.1016/j.nicl.2019.101939
pmc: PMC6664197
pii:
doi:

Substances chimiques

Spin Labels 0

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

101939

Informations de copyright

Copyright © 2019 The Authors. Published by Elsevier Inc. All rights reserved.

Références

AJNR Am J Neuroradiol. 1998 Jan;19(1):143-9
pubmed: 9432172
J Magn Reson Imaging. 2015 Jun;41(6):1591-600
pubmed: 25143014
Neuroimage Clin. 2014 Mar 19;4:517-25
pubmed: 24818078
Eur J Radiol. 2018 Apr;101:38-44
pubmed: 29571799
AJNR Am J Neuroradiol. 2011 Dec;32(11):2023-9
pubmed: 21979494
Hum Brain Mapp. 2011 Nov;32(11):1973-85
pubmed: 21259384
Magn Reson Med. 1999 Jun;41(6):1246-54
pubmed: 10371458
Neuroimage Clin. 2014 Aug 30;6:126-33
pubmed: 25379424
Lancet. 1966 Nov 19;2(7473):1113-5
pubmed: 4162534
Neuroimage. 2017 Feb 15;147:233-242
pubmed: 27988320
Neuroimage. 2014 Jan 15;85 Pt 1:287-93
pubmed: 23631990
Magn Reson Imaging. 2006 Apr;24(3):249-54
pubmed: 16563953
NMR Biomed. 2011 Jan;24(1):80-8
pubmed: 20669148
Neuroimage Clin. 2017 May 26;15:401-407
pubmed: 28603687
Pediatr Radiol. 2015 Dec;45(13):1988-2000
pubmed: 26209958
Neuroimage. 2012 Nov 15;63(3):1510-8
pubmed: 22892333
Arch Pediatr. 2010 Sep;17 Suppl 3:S67-77
pubmed: 20728812
Br J Radiol. 2006 Aug;79(944):688-701
pubmed: 16861326
J Cereb Blood Flow Metab. 1985 Mar;5(1):65-9
pubmed: 3871783
Radiology. 2011 Oct;261(1):235-42
pubmed: 21828190
Pediatr Res. 2006 Sep;60(3):359-63
pubmed: 16857776
Med Image Comput Comput Assist Interv. 2012;15(Pt 2):163-70
pubmed: 23286045
Magn Reson Med. 2009 Mar;61(3):686-95
pubmed: 19132757
AJNR Am J Neuroradiol. 2018 Oct;39(10):1912-1918
pubmed: 30213808
Neuroimaging Clin N Am. 2006 Feb;16(1):149-67, ix
pubmed: 16543090
Eur J Radiol. 2013 Mar;82(3):538-43
pubmed: 23199750
Arch Dis Child Fetal Neonatal Ed. 2015 May;100(3):F238-42
pubmed: 25605620
Early Hum Dev. 2014 Oct;90(10):703-5
pubmed: 25028135
Acta Paediatr. 2015 Aug;104(8):752-8
pubmed: 25824694
J Child Neurol. 2016 Apr;31(5):553-9
pubmed: 26323498
J Magn Reson Imaging. 2008 Jun;27(6):1229-34
pubmed: 18504740
Stroke. 2016 Jun;47(6):1514-9
pubmed: 27143277
Magn Reson Imaging. 2014 Jun;32(5):497-504
pubmed: 24631716
BMC Pediatr. 2014 Jul 08;14:177
pubmed: 25005267
Magn Reson Med. 2010 Mar;63(3):641-7
pubmed: 20146233
Magn Reson Med. 2015 Jan;73(1):102-16
pubmed: 24715426
Eur Radiol. 2015 Jan;25(1):113-21
pubmed: 25097129
Neuroimage. 2012 Feb 1;59(3):2255-65
pubmed: 21985910
J Pediatr. 1990 Jul;117(1 Pt 1):119-25
pubmed: 2115079
Neurology. 1997 Oct;49(4):1035-41
pubmed: 9339686
MAGMA. 2018 Dec;31(6):725-734
pubmed: 29916058
Sci Data. 2015 Feb 03;2:150003
pubmed: 25977810
AJNR Am J Neuroradiol. 2006 Aug;27(7):1546-54
pubmed: 16908578
Magn Reson Med. 1998 May;39(5):702-8
pubmed: 9581600
Pediatr Neurol. 2007 May;36(5):330-3
pubmed: 17509466
Ann Neurol. 2012 Aug;72(2):156-66
pubmed: 22926849
Magn Reson Med. 1998 Sep;40(3):383-96
pubmed: 9727941
Neuroimage. 2012 Sep;62(3):1499-509
pubmed: 22713673
AJNR Am J Neuroradiol. 2013 Aug;34(8):1649-55
pubmed: 23493898

Auteurs

Maïa Proisy (M)

Univ Rennes, Inria, CNRS, INSERM, IRISA, Empenn ERL U-1228, F-35000 Rennes, France; CHU Rennes, Radiology Department, F-35033 Rennes, France. Electronic address: maia.proisy@chu-rennes.fr.

Isabelle Corouge (I)

Univ Rennes, Inria, CNRS, INSERM, IRISA, Empenn ERL U-1228, F-35000 Rennes, France.

Antoine Legouhy (A)

Univ Rennes, Inria, CNRS, INSERM, IRISA, Empenn ERL U-1228, F-35000 Rennes, France.

Amélie Nicolas (A)

CHU Rennes, Radiology Department, F-35033 Rennes, France.

Valérie Charon (V)

CHU Rennes, Radiology Department, F-35033 Rennes, France.

Nadia Mazille (N)

CHU Rennes, Neonatology Department, F-35033 Rennes, France.

Stéphanie Leroux (S)

CHU Rennes, Neonatology Department, F-35033 Rennes, France.

Bertrand Bruneau (B)

CHU Rennes, Radiology Department, F-35033 Rennes, France.

Christian Barillot (C)

Univ Rennes, Inria, CNRS, INSERM, IRISA, Empenn ERL U-1228, F-35000 Rennes, France.

Jean-Christophe Ferré (JC)

Univ Rennes, Inria, CNRS, INSERM, IRISA, Empenn ERL U-1228, F-35000 Rennes, France; CHU Rennes, Radiology Department, F-35033 Rennes, France.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH